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Abstract: - This paper presents a multidisciplinary study that aims at designing a time-predictable low-leakage 
cache memory for real-time embedded systems. Both state-preserving and state-destroying leakage-saving 
mechanisms have been tested on a superscalar processor with two-level cache hierarchy. Full system simulation 
has been used to examine leakage-saving capability of each mechanism. In addition, a statistical approach has 
been proposed to study processor’s time-predictability under potential leakage-saving techniques. Furthermore, 
the performance of real-time embedded systems in presence of leakage-saving techniques has been thoroughly 
analyzed using Matlab/Simulink-based models. Each possible design alternative has been evaluated in terms of 
four parameters that include: average power saving, degree of predictability (DoP), loss of schedulability (LoS) 
and performance of the underlying embedded system. Our results have shown that applying a state-preserving 
leakage-saving mechanism on either first-level data cache or last-level unified cache provides the most viable 
design option. The first alternative has achieved an average power saving of 32.61 %, a DoP of 93.05% and a 
LoS of 0% while the second alternative has achieved an average power saving of 50.21%, a DoP of 80.30% and 
a LoS of 13.68%. Moreover, neither of them has caused any disruption in the performance of the experimental 
embedded system models. Consequently, using a first-level data cache with a state-preserving leakage-saving 
mechanism represents the best feasible option for systems with very critical timing requirements while 
employing a state-preserving low-leakage last-level cache can be the suitable option for systems with soft 
timing requirements and stringent power constrains.  
 
 
Key-Words: - cache memory, real-time, embedded, leakage power, time-predictability, performance.  
 
1 Introduction 
Real-time systems (RTS) have already become a 
ubiquitous computing platform in which programs 
(tasks) should maintain temporal correctness 
besides logical correctness [1]. In reality, most 
real-time systems are embedded systems where an 
embedded processor is employed to control a 
physical process [2].  Examples of some fields 
where embedded systems can be used include 
mobile devices, power plants control, automobile 
systems and cyber-physical systems. Nowadays, 
real-time applications have become more complex 
in terms of their memory footprint and processing 
requirements. Hence, their usage in real-time 
systems creates overly demanding tasks that 
require a very complex processor in order to cope 

with their functional and temporal requirements. 
To meet these requirements, embedded processors 
have employed many performance enhancement 
features such as cache memory. Cache memory 
leverages the principle of locality of reference and 
keeps the most heavily accessed instructions and 
data physically close to the processor [3]. Cache 
memory is much faster than the main memory and 
can run at the processor speed.  Therefore, storing 
the required instructions and data items in the 
cache will reduce the number of clock cycles 
needed to fetch them which ,in turn,  improves the 
overall performance of the processor. However, the 
potential performance improvement achieved by 
using cache memories comes at the expense of 
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reducing the time predictability required by real-
time systems [4]. Time predictability is a major 
concern in the design space of real-time embedded 
systems such as automotive systems and nuclear 
power plants [5, 6]. Such systems are known by 
their strict timing requirements and high cost of 
failure and are usually referred to as safety-critical 
systems. In this kind of systems, missing the 
deadline of a particular task may lead to 
catastrophic outcomes and endanger human lives. 
Thus, software applications, in these systems, are 
implemented as hard real-time tasks with hard 
deadlines. A hard deadline is a deadline that should 
never be missed [1].  Moreover, real-time 
embedded systems often have constrained 
resources that should be carefully allocated in order 
to provide reasonable resource utilization and 
guarantee timing requirements of the running tasks 
[2]. In order to guarantee such stringent 
requirements, Worst-Case Execution Time 
(WCET) analysis is usually employed. Its goal is to 
obtain an upper-bound of the execution time of all 
tasks such that resource utilization and scheduling 
analysis can be studied under worst-case scenarios 
[7-9]. However, WCET depends not only on the 
running application but also on the micro-
architecture of the host processor. Unfortunately, 
most of the performance enhancement hardware 
such as cache memories, instruction pipelines and 
branch predictors are designed to improve the 
average-case performance, not the worst-case 
performance. Hence, accurate WCET estimation on 
modern processors is very complicated task due to 
non-deterministic timing behavior imposed by the 
use of performance enhancement hardware.  In 
particular, modern processors have heavily relied 
on cache memory to bridge the widening 
performance gap between the processor speed and 
the memory speed. Caches, unfortunately, can lead 
to unpredictable timing since whether or not a 
memory reference will hit in the cache is dependent 
on the program’s dynamic behavior i.e. the 
interaction between program’s working set and 
cache organization [10].  The difference between a 
hit and a miss can result in an order of magnitude 
difference in the execution time of a program. On 
the other hand, power consumption has recently 
become a major design concern in high-
performance embedded processors [11, 12].  
Although dynamic power -caused by switching 
activity- constitutes the majority of power 
dissipation in old processors implemented with 
large feature sizes, leakage power—caused by 
leakage current even when circuits are not 

switching— contributes to the majority of power 
consumption in modern processors implemented 
with nano-scale feature sizes [13,14]. Therefore, 
leakage power control has become an essential 
design constraint to maintain control of power 
dissipation in both general purpose and embedded 
processors. Moreover, as cache memories 
constitute a significant portion of processor’s 
transistor budget, minimizing its leakage power 
consumption is of   utmost importance to processor 
designers [15]. Hence, several leakage-control 
mechanisms have been proposed to reduce leakage 
power consumption especially in cache memories. 
These techniques can be classified as either state-
preserving or state-destroying [16].  In state-
destroying techniques, the cache line is completely 
turned which leads to a complete loss of the stored 
data.  On the other hand, state-preserving 
techniques put the cache line into low-power mode 
such that its leakage power will be reduced to some 
extent while the stored data is still valid for future 
usage. This paper studies GatedVss [17] as a 
candidate for state-destroying techniques and 
Drowsy cache [18] as a state-preserving 
alternative. In the domain of real-time embedded 
systems, in which embedded processor are 
employed, the use of these leakage-power saving 
mechanisms introduces some degree of 
unpredictability in tasks’ execution time. For 
example, in the GatedVss technique; a cache line 
will be switched off if it spends a sufficiently long 
time interval without being used. Hence, the data 
stored in this cache line will be completely lost and 
a future access to this line will cause a cache miss 
which need more clock cycles to be handled by 
accessing lower levels of the memory hierarchy; 
this means that the time required to handle a 
particular cache reference depends on the current 
power mode of that line; this fact leads to timing 
unpredictability especially in the contest of real-
time systems. The fact that cache leakage-control 
mechanisms cause non-deterministic timing 
behavior of embedded processors motivates the 
study of WCET in presence of such mechanisms 
and the design of low-leakage cache hierarchy that 
attains the best tradeoff between leakage power 
consumption and time predictability in real-time 
embedded processors. This paper addresses leakage 
control in real-time systems and makes the 
following innovative contributions: 

a. Analyzing the potential power savings of each 
candidate leakage-saving mechanism based on 
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full-system simulation and realistic processor 
configurations. 

b. Proposing a statistical approach to estimate 
task’s WCET on processors with low-leakage 
cache hierarchy. This makes this paper, to the 
best of our knowledge, the first research effort 
to tackle this issue.  

c. Modeling and analyzing the impact of leakage-
saving mechanisms on time predictability and 
overall performance of standalone and 
networked real-time embedded systems.  

d. Identifying the suitable leakage-saving 
mechanism for each type of real-time 
embedded systems based on the stringency of 
its power budget and the criticality of its timing 
requirements.  

The rest of this paper is organized as follows. 
Section 2 summarizes the related work, section 3 
describes our methodology, results and analysis are 
presented in section 4, and section 5 summarizes 
and concludes.   

2 Related Work 
This section summarizes previous research work 
that is closely related to this paper in three main 
aspects: WCET estimation, leakage-control in real-
time systems and real-time embedded control of 
physical systems.  
 
2.1 WCET Estimation 
WCET estimation is an important part in the 
analysis of real-time systems. Estimation techniques 
can be classified into five main categories [19, 20]: 
Static WCET Analysis [21-23], Measurement-based 
WCET Analysis [24-26], Hybrid-Measurement–
based WCET Analysis [27, 28], Parametric-WCET 
Analysis [29] and Statistical WCET Analysis 
[30,31]. In static techniques, a static WCET is made 
based on the knowledge of the control-flow graph 
(CFG) of the program being analyzed and a model 
of the processor on which the program is going to 
execute. It is usually performed by the complier.  
The WCET is the duration of the longest path 
through the CFG. Static WCET estimation usually 
involves pessimistic assumptions regarding some 
variables such as the number of loop iteration or 
unrealistic assumptions about some hardware 
components such as assuming a perfect cache level 
i.e. a cache level with no misses or a pipelined 
processor with no data or control hazards. In other 
words, performance enhancement techniques 
employed in modern processors such as caching and 
pipelining introduces a high degree of difficulty in 

applying static estimation methods [32].  In 
measurement-based techniques, the program is 
executed, for sufficiently large number of times, on 
the target processor and the longest observed 
execution time will be used as a WCET. This 
procedure involves testing the program with 
different input combinations that are assumed to be 
representative of the whole input space of the 
program. However, none of the tested input patterns 
may excite the worst-case path of the program. To 
remedy this situation, the observed WCET is usually 
scaled with an appropriate safety factor; however, 
there is no systematic way for choosing such a 
factor. In other words, measurement-based 
techniques could underestimate the actual WCET of 
the program. On the other hand, a hybrid 
measurement-based technique combines static and 
measurement-based techniques in order to eliminate 
the potential overestimation and underestimation 
caused by them respectively. In this technique, the 
execution times of program segments, generated via 
instrumentation points, are collected and used in 
subsequent stages of WCET estimation. The 
rationale behind this technique is that the WCET of 
each program segment has been obtained by 
applying representative input patterns. However, 
failing to satisfy such assumption may compromise 
the final WCET estimate i.e. it may lead to 
overestimation or underestimation of the actual 
WCET. In parametric WCET estimation, the WCET 
estimate is expressed as a closed-form function in   
terms of parameters of the program, rather than just 
a single numerical value. A parametric WCET 
formula contains more information about the 
program being analyzed and can be applied in 
situations where some parameters are not known 
until runtime or to determine which program 
segments have more influence on the overall 
WCET. However, this technique can be applied for 
very small programs with small working sets but not 
for large programs with large instruction footprints 
and data-set size. Finally, statistical WCET analysis, 
to which our proposed technique belongs, applies 
statistical methods to obtain a WCET estimate with 
an extremely low and quantifiable probability of 
being exceeded (e.g. 10-10).  The majority of these 
techniques are based on Extreme Value Theory 
(EVT) [33]. In this type of analysis, execution time 
values obtained from end-to-end measurements are 
subjected to statistical analysis based on the 
techniques of EVT. The outcome of this analysis is 
a probability function of execution time from which 
WCET estimates, with pre-defined exceedance 
probability, can be obtained. Only this category will 
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be elaborated and compared to our proposed 
methodology. In [30], execution time measurements 
were fit to Gumbel Max distribution and WCET 
estimates were obtained using an excess distribution 
function. However, their proposed methodology 
incorrectly fits raw execution time measurements to 
the Gumbel Max distribution; Gumbel Max and 
other members of EVT family of distributions are 
intended to model random variables that are 
minimum or maximum of a large number of other 
random variables [20]. Moreover, they did not apply 
any Goodness-of-Fit (GOF) test to identify whether 
the estimated parameters of the Gumbel Max 
distribution can truly fit the measured execution 
times. On the other hand, the work presented in [31] 
has extended the study of [30] by predicting the 
likelihood that the WCET estimate made by EVT 
distributions will be exceeded. They have employed 
the method of block maxima [33] to fit execution 
time measurements to Gumbel Max distribution. In 
this method, the measured values will be divided 
into blocks, the maximum value in each block will 
be observed and then the observed maximum values 
will be fitted to the Gumbel Max distribution. In 
addition, they have performed a Goodness-of-Fit 
analysis to check whether Gumbel Max parameters 
actually fit the measured execution time values. Our 
work differs from the previous studies in two main 
aspects. First, the proposed WCET estimation 
technique depends on Generalized Extreme Value 
(GEV) distribution which provided more accuracy 
as compared to other distributions [34]. Second, the 
statistical analysis performed in this work was based 
on execution time measurements that take into 
account all possible interactions between the 
application’s working set and the micro-architecture 
of the processor, unlike the previous studies which 
have overlooked this issue.  
2.2 Leakage Reduction in Cache Memory 
Several techniques have been proposed to reduce 
leakage power consumption of cache memories. 
These techniques can be either state-destroying or 
state-preserving [16]. In [17], a state-destroying, 
leakage-saving technique was proposed based on a 
Gated-Vdd circuit. In this technique, a high-threshold 
sleep transistor is used to disconnect a particular 
storage cell from Vdd.  This technique can achieve 
drastic leakage savings since it breaks the 
connection with the power supply. However, it can 
lead to significant performance losses and dynamic 
power consumption due to sate losses [35]. In [18], 
a state-preserving leakage-saving mechanism known 
as Drowsy cache has been presented and evaluated. 

It achieves significant leakage savings by putting a 
cache line into low-power “Drowsy” mode. In this 
technique, the information stored in the cache line 
will be preserved by switching its Vdd to another 
power supply that is only 1.5 times the threshold 
voltage [16, 35]. In other words, Gated-Vdd 
techniques completely turns that cache line off 
while Drowsy cache puts a cache line into a low 
retention voltage level such that its contents are 
retained. Hence, state-preserving techniques 
produce much less penalty as compared to state-
destroying ones  while the latter provide much more 
leakage power savings. However, the primary focus 
of the aforementioned studies was leakage-power 
savings and the tradeoff achieved with the average-
case performance of the processor. In other words, 
they did not study the impact of such techniques on 
the worst-case performance of the processor and 
time-predictability of real-time systems. On the 
other hand, [36] has presented a timing-aware 
leakage control mechanism suited for hard real-time 
systems. Their proposed methodology relies on 
using system slack. They have proposed a joint use 
of Gated-Vdd and Drowsy cache based on the overall 
utilization of the processor.     Their proposed 
technique put cache lines into low-leakage mode 
such that leakage-power is saved while timing 
requirements are met. However, our work differs 
from theirs in a primary facet: they have assumed 
that the WCET of the program is already known and 
did not propose any mechanism to estimate the 
WCET of a program in presence of low-leakage 
caches.  
 
2.3 Design of Real-Time Embedded Control 

Systems 
Efficient implementation of a real-time control 
system needs a codesign of both computer and 
control systems [36]. In other words, the computer 
system must be designed such that all functional 
requirements are met and the controllers must be 
carefully designed taking into account the resource-
constrains of embedded systems [37].  In embedded 
control systems, the control algorithm is 
implemented as a real-time task that executes 
concurrently with other tasks, including other 
control tasks. Moreover, embedded systems are 
usually resource-constrained in terms of their 
processing capability and memory capacity [2]. 
Therefore, the codesign of computer (scheduling) 
and control systems can be stated as follows [36]: 
Given a group of physical processes to be controlled 
by a computer with limited resources, implement a 
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set of controllers and schedule them as real-time 
tasks  such that the control performance and 
stability of each controlled process is maintained 
and optimized. 
Previous research efforts [38-43] have studied the 
extent to which real-time scheduling can affect the 
performance and stability of controlled processes in 
both standalone and networked control systems. 
However, they have performed their analysis based 
on the fact that timing requirements of real-time 
tasks can be satisfied by using modern high-
performance processors. Unfortunately, such high-
performance processors are typically optimized for 
average-case performance rather than predictable 
worst-case performance required by real-time 
systems. In other words, they have overlooked the 
processor-induced unpredictability in their analysis 
which, consequently, can lead to unreliable results.  
This paper sheds light on the impact of processor-
induced delays on control performance and focuses 
on schedulability analysis of real-time control tasks 
in presence of low-leakage cache hierarchy. In other 
words, it investigates the impact of processing 
delays induced by leakage-saving mechanisms on 
the schedulability of control tasks and, therefore, on 
the performance and stability of the controlled 
processes. 
 
3. Methodology 
The experimental procedure that has been followed 
to perform this research consists of three main steps: 
a) estimation of leakage-power savings using 
different leakage-saving techniques at different 
cache levels, b) time-predictability analysis and 
WCET estimation under different leakage-saving 
techniques, c) modelling of standalone and 
networked real-time embedded control systems and 
analysis of their timing behaviour and control 
performance in presence of leakage-saving 
techniques. The next sub-sections thoroughly 
explain each step.  
 
3.1 Power Tradeoffs Analysis 
This step aims at comparing Gated-Vss technique 
and Drowsy cache in terms of their potential power 
savings in a superscalar processor whose 
configuration is shown in table 1. All results were 
obtained using Hotleakage [44]. Hotleakage is a 
full-system simulator with an architectural model 
for sub-threshold and gate-leakage in caches and 
cache-like structures.  This paper assumes a 
processor model that closely resembles an alpha 
21264 [45]. In addition, leakage-saving mechanism 

is applied on exactly one cache level at a time.  
Power estimation was based on six randomly chosen 
benchmarks from SPEC2000 benchmark suite [46].  

Table 1: Baseline Processor Configuration 

Parameter Value 
Processor 

Functional Units 

 

 
LSQ Size 
RRU Size 

Fetch Width 
Decode Width 

Issue Width 
Commit Width 

Fetch Queue Size 
Clock Frequency 

4 Integer ALU 
1 Integer 

multiplier/divider 
4 FP ALU 

1 FP multiplier/divider 
8 
8 

4 instruction / cycle 
4 instruction / cycle 
4 instruction / cycle 
4 instruction / cycle 

4 instruction 
2800 MHz 

Cache and Memory Hierarchy 
L1 Instruction Cache 

 

 
L1 Data Cache 

 

 

Last Level(L2) 

 

 
Main Memory 

Size:  32KB, 64 byte 
blocks 

Associativity: 2-way  
1 cycle latency 

Size: 64KB , 64 byte 
blocks 

Associativity: 2-way  
1 cycle latency 

Write policy: write back 

Size: 256 KB unified , 
128 byte blocks 
Associaitivity: 8 
6 cycle latency 

Write policy: write back 
100 cycle latency 

Brach Predictor 
Predictor 

 

BTB 
Misprediction Penalty 

Combined , bimodal 
2KB table 

Two-level 1KB table 
8-bit history 

512 entry, 4-way 
3 Cycles 

Table 2 shows the used benchmarks along with a 
short description for each one.  The two leakage-
saving mechanisms have been implemented such 
that a particular cache line is put into low-leakage 
mode if it spends a sufficiently long time interval 
without being accessed. We refer to this interval to 
as Low-Power Interval (LPI).  
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Admittedly, both leakage-control mechanisms 
require extra hardware that adds more dynamic and 
leakage power to that consumed by the original 
processor hardware. Their power cost include: 
dynamic power due to extra hardware, leakage 
power resulting from extra hardware, dynamic 
power due to mode transitions and dynamic power  
Due to loss of state [44, 45].   Hence, this paper has 
measured the effectiveness of each leakage-saving 
technique taking into account both benefits and 
costs of each technique.  For each technique, all 
benchmarks have been run, till completion, on the 
baseline configuration assuming different LPI 
values.  The efficacy of each technique at each 
possible LPI has then been quantified in terms of its 
average power savings among all benchmarks. 

Table 2: Benchmarks Description. 
Benchmark Category 

ammp Computational Chemistry 
apsi Meteorology: Pollutant Distribution 

equake Seismic Wave Propagation Simulation 
bzip2 Compression 
galgel Computational Fluid Dynamics 
mesa 3-D Graphics Library 

 
3.2 Statistical WCET Estimation Using EVT 
This part compares Gated-Vss and Drowsy cache in 
terms of time predictability; it estimates the WCET 
of real-time tasks in presence of these techniques 
and figures out which technique would provide a 
close predictability as compared to a baseline 
system with no leakage-control.  WCET estimation 
using EVT consists of two main steps as shown in 
the following sub-sections. 

3.2.1 Generation of Execution Time Population 
(ETP).  
An important step in any statistical approach is to 
generate data samples from which statistical models 
can be obtained and evaluated. In this work, data 
samples represent execution time values obtained 
from end-to-end measurements on the target 
processor. In general, the total population of 
execution time values in a real-time system is 
extremely large and difficult to determine. 
Therefore, it is important to limit the population of 
interest into a representative dimension that can be 
treated in a tractable manner. This fact requires 
understanding the factors with strong influence on 
the execution time of a particular task and 
quantifying the extent to which a particular factor 
can affect the execution time of any run of the task 

under study. These factors are usually known as 
Source of Execution Time Variability (SETV) 
[47].Typically,  the execution time of a program 
depend on its working set and the extent to which 
this working set can interact with the underlying 
processor micro-architecture. In this paper, a Placket 
and Burman (PB) design [48] has been used to 
obtain execution time samples that take into account 
the impact of each micro-architectural parameter on 
the execution time of a task. PB design has been 
employed since it requires only about N simulations 
to produce the desired level of information that 
takes into account the impact of N different 
parameters. However, the major critique against PB 
design is that it is unable to quantify the effects of 
all possible interactions between different 
parameters. Hence, it is possible that a significant 
but unobserved interaction may change the apparent 
impact of a particular parameter. However, this 
situation probably does not occur for processor 
designers; it has been shown in [49] that the 
interaction between parameters is significant only 
when the impact of each parameter is by itself 
significant. End-to-end measurements of execution 
times were obtained using Hotleakage [44]. For 
each simulation run, a particular configuration is 
obtained from the PB design matrix. The rows of the 
design matrix represent different processor 
configurations while the columns represent the 
values of different parameters in each configuration. 
For instance,   table 3 illustrates a PB design matrix 
that is useful to study the impact of 8 or less 
parameters on the execution time of a program.  

Table 3: PB Design Matrix for 8 Parameters. 
A B C D E F G H Time 
-1 -1 -1 -1 -1 -1 -1 -1 7 
1 -1 +1 +1 -1 +1 -1 -1 11 
-1 -1 -1 +1 +1 +1 -1 +1 18 
-1 -1 +1 +1 +1 -1 +1 +1 22 
+1 +1 +1 -1 +1 +1 -1 +1 9 
+1 -1 -1 -1 +1 +1 +1 -1 10 
-1 +1 -1 -1 -1 +1 +1 +1 33 

   
In the PB design matrix, a “+1” or high value 
indicates a parameter value that is higher than the 
normal range of values whereas a “-1” or low value 
indicates a parameter value that is lower than the 
normal range of that parameter values. The values 
of a particular parameter are not restricted to 
numerical values only. For instance, in case of cache 
replacement policy, a random replacement policy 
may indicate a low value while a Least Recently 
Used policy may indicate a high value. In this work, 
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execution samples were generated based on PB 
design matrix that captures the interactions between 
program’s working set and 39 different micro-
architectural parameters. The selected parameters 
and their PB values are shown in Table 4.  As 
mentioned earlier, this work assumes a superscalar 
processor with a 2-level cache hierarchy. The first 
level (L-1) consists of separate instruction cache (I-
Cache) and a separate data cache (D-Cache) while 
the second level contains and a unified cache (U-
Cache). The PB design matrix takes into account the 
size, block size, associativity, replacement policy 
and the latency of each cache level. The cache 
hierarchy also employs an instruction translation 
lookaside buffer (I-TLB) and a data lookaside buffer 
(D-TLB). The size, page size, latency and 
associativity of each TLB have also been considered 
in the PB matrix. Other parameters of the memory 
hierarchy include main memory latency (Latency-
First, Latency-Second) and its bandwidth. The PB 
matrix includes the parameters of the processor and 
its functional units as well. Processor parameters 
include Instruction Fetch Queue (IFQ), Return 
Address Stack (RAS), Branch Prediction Type, 
Branch Misprediction Penalty, Branch Target Buffer 
(BTB), Reorder Buffer (ROB), Load/Store Queue 
(LSQ) and Number of Memory Ports. On the other 
hand, functional unit’s parameters include: number 
of integer arithmetic and logic units (ALU), number 
of integer Multiplier/Divider units, number of 
floating point (FP) ALUs and the number of FP 
Multiplier/Divide units. Based on the parameters 
shown in table 4, a PB matrix with 48 simulation 
runs has been created. The PB matrix has been 
created using minitab statistical software [50]. This 
number of simulation runs provides a reasonable 
threshold to identify the interactions among the 
parameters of interest. In order to create the ETP, 
based on which the statistical analysis will be 
carried out, an application should be tested with 
different input patterns or data sets that are 
guaranteed to excite all possible control-flow paths 
within the CFG of the application. However, it is 
intractable to test the application with all possible 
input patterns. Consequently, it is important to test 
the application with a reduced yet a representative 
set of input patterns. In this work, simple random 
sampling (SRS) has been used to select a set of 
input patters from the population of possible inputs. 
In SRS, each possible input has the same chance of 
being selected [20].  

Table 4: PB Matrix Parameters and their Values. 

Parameter Low 
Value 

High 
Value 

Processor 
IFQ Size 4 32 

Branch Predictor Not Taken Perfect 
Branch Misprediction 

Penalty 
10 2 

Number of RAS Entries 4 64 
Number of BTB Entries 16 512 
Associatively of BTB Fully 2 
Speculative Branch 

Update 
Decode Write 

Back 
LSQ Size 2 64 

Number of Memory Ports 1 4 
Functional Units 

Number of Integer ALUs 1 4 
Number of (FP) ALUs 1 4 

Number of Integer 
Multiplier/Divisor Units 

1 4 

Number of FP 
Multiplier/Divisor Units 

1 4 

Memory Hierarchy 
L-1 I-Cache Size 4 KB 128 KB 

L-1 I-Cache Assoc. 1 8 
L-1 I-Cache Block Size 16 64 

L-1 I-Cache Replacement 
Policy 

Random LRU 

L-1 I-Cache Latency 4 1 
L-1 D-Cache Size 4 KB 128 KB 

L-1 D-Cache Assoc. 1 8 
L-1 D-Cache Block Size 16 64 

L-1 D-Cache 
Replacement Policy 

Random LRU 

L-1 D-Cache Latency 4 1 
L-2 U-Cache Size 256 KB 8192 KB 

L-2 U-Cache Assoc. 1 8 
L-2 U-Cache Block Size 64 128 

L-2 U-Cache 
Replacement Policy 

Random LRU 

L-2 U-Cache Latency 20 5 
Memory Latency, First 200 50 

Memory Latency, Second 4 1 
Memory Bandwidth 8  32  

I-TLB Size 32 256 
I-TLB Page Size 4 K 4096 K 

I-TLB Associativity 2 fully 
D-TLB Size 32  256 

D-TLB Page Size 4 K 4096 K 
D-TLB Associativity 2 fully 

I-TLB, D-TLB Latency 80 30 
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Its usage assures that regardless of the size of input 
population, statistical analysis based on the 
sampling distribution generated by SRS can 
reasonably estimate the parameters of the 
underlying population. Having selected the input 
patterns, each selected input has been simulated 
under all possible configurations provided by the PB 
matrix and its execution time has been observed. 
The set of all execution times obtained by testing 
each selected input on all possible PB 
configurations yields the population of execution 
times based on which statistical inference can be 
made.  For each cache level, three execution time 
populations have been created; one for the base case 
where no leakage-control is applied and the other 
two represent the cases where either Gated-Vss or 
Drowsy cache is applied.  

3.2.2 Statistical Estimation of WCET  
In this part, EVT techniques are applied on 
execution time populations in order to obtain a 
statistical WCET estimate. The block maxima (BM) 
technique [33] is used to fit execution time 
measurements to the GEV distribution.  The 
probability density function (PDF) of the GEV 
distribution is given by [33]: 
 

)(1)(1),,|( xyexyxf −+= ξ
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Where: µ, σ and ξ are location, scale and shape 
parameters of the distribution, respectively.  The 
basic operation of the BM method is illustrated in 
the flow chart shown in fig. 1. The ultimate goal of 
this process is to estimate distribution parameters 
that yields distribution’s PDF that represents the 
sampled data and captures the tail behaviour of the 
underlying ETP.  The suitability of the selected PDF 
to the sampled ETP can be tested via an appropriate 
GOF test. This work uses Chi-square test [51] to 
check whether the estimated parameters of the GEV 
distribution can truly fit the measured execution 
time values.  Once the estimated PDF passes the 
GOF test, it will represent the probabilistic model 
upon which WCET estimation can be made. Our 
proposed WCET estimation algorithm, based on 
BM method, is depicted in fig. 2. This approach has 
been implemented using MATLAB [52]. The 
proposed algorithm takes as input an ETP which 

consists of a number of execution time samples and 
produces a WCET estimate with a predefined 
confidence level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Block maxima (BM) flow chart. 

 

Fig. 2: WCET Estimation Algorithm. 

The ETP is first divided into an equal-size number 
of blocks (nB) and the maximum value in each 
block will be observed.   However, the number of 
blocks is not arbitrarily chosen but rather should be 
selected based on two important conditions. First, 
the number of blocks should be greater than 20 in 

Start 

Divide ETP into Blocks 

Select the Maximum 
Value of Each Block 

Fit Block Maxima to 
GEV Distribution  

End 
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order to provide a sufficient number of samples for 
statistical analysis [51]. Second, the value of nB 
should be chosen such that the GEV distribution 
parameters estimated based on that value pass the 
GOF test performed in line 14. Hence, our algorithm 
checks multiple values of nB until the 
aforementioned conditions are satisfied. This can be 
seen in lines 5 through 16 in fig. 2. Fig. 3 illustrates 
the pseudocode of the GOF test. This test takes as 
input block maxima that have been observed based 
on a particular value of nB and returns a Boolean 
value that indicates whether the observed block 
maxima complies with the GEV distribution. As 
shown in Fig. 2, the GOF procedure is called 
iteratively until a distribution fit is achieved. The 
GOF test procedure receives as input a vector of 
block maxima and uses the Maximum Likelihood 
Estimate (MLE) method to estimate relevant GEV 
distribution parameters. 
 

Fig. 3: Pseudocode of GOF Test. 
 
The estimated parameters and the vector of maxima 
are then passed to the Chi-Square test procedure in 
order to determine the suitability of the estimated 
GEV parameters to the sampled block maxima. The 
MLE method is an extremely important approach to 
estimation in statistical inference. A formal 
definition of MLE can be stated as follows [53]:  
 
Definition 1: Given independent observations 
x1,x2,x3 .... xn from a probability density function 
(PDF) f(x; θ) where x and θ represent variables and 
distribution parameters respectively, the maximum 
likelihood estimator is that which maximizes the 
likelihood function 
 

1 2
1

( , ,...., ; ) ( , )
n

n i
i

L x x x f xθ θ
=

=∏            (2) 

Such that θ = (σ, µ, ξ). In general, likelihoods are 
conditional probability densities that can be used in 
either of two cases: First, when θ is fixed, the PDF 
f(x; θ) is used to compute the density at x, f(x| θ).  
Second, when x is fixed, the PDF is used to find the 
likelihood of the parameters θ, f(θ|x).  Quiet often, it 

is more convenient to work with the natural 
logarithm of the likelihood function in finding the 
maximum of that function. Hence, If the set of 
execution times {xi} contained in the vector of 
block maxima are independent and identically 
distributed from a GEV distribution, then the log-
likelihood function for a sample of n block maxima 
{x1,x2,...,xn} is  
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σ
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Once the GEV parameters are obtained from the 
MLE method, Chi-square test is performed to assess 
whether the observed block maxima have truly 
come from a GEV distribution whose parameters 
have been returned by the MLE method. Chi-square 
test is a mathematical formalization of the intuitive 
idea of comparing the histogram of block maxima to 
the shape of the candidate GEV distribution. In this 
work, the Chi-square test has been implemented 
according to the pseudo code shown in fig. 4. This 
implementation has been derived from [52]. As 
shown in fig. 4, the test divides the vector of block 
maxima into K class intervals based on the rules 
given in table 5 [52]. It then computes the test 
statistic as: 

                       
2

2
0

1

( )k
i i

ii

O E
E

χ
=

−
=∑                   (4) 

Such that:  Oi and Ei are the observed and expected 
frequencies in the ith class interval, respectively. The 
expected frequency Ei  in a particular class interval 
is computed as npi where n is the number of 
elements in the maxima vector and pi is the 
theoretical probability associated with the ith class 
interval. The value of pi is computed based on the 
parameters estimated by the MLE method. 
According to [52], the test statistic given by eq. (4) 
follows the chi-square distribution with (K-s-1) 
degrees of freedom (df), where s is the number of 
parameters of the candidate distribution estimated 
by the MLE method. The GEV distribution has an s 
value of 3. Having computed the test statistic, it 
should then be compared against the critical value 
of that statistic at df degrees of freedom and a 
particular level of significance [52]. 
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Fig. 4: Chi-Square Test Pseudocode. 
   
   In this work, significance levels of 0.05 and 0.01 
have been considered. As can be seen in fig. 4, the 
chi-square test will return true if the computed 
statistic is less than the critical value of that statistic 
at the given degrees of freedom and either of the 
considered levels of significance - with the 0.05 
level being checked first. Otherwise, it will return 
false. A true value indicates that the block maxima 
conform to the GEV distribution with the 
parameters estimated by the MLE method. 
Consequently, the fitted GEV distribution can then 
be used to make WCET estimations.  

Table 5: Class Interval Rules 

Sample Size (n) Number of Class Intervals 
< 20 Do not use chi-square test 
50 5 to 10 

100 10 to 20 
       >100 n or n/5 

 
In this work, WCET estimation is based on the type 
of systems in which real-time task is implemented. 
Real-time systems can be classified as either soft or 
hard systems [1]. Soft real-time systems are those 
systems in which task deadlines can occasionally be 
missed while hard real-time systems are those 

systems in which deadlines are never allowed to be 
missed. For soft RTS, the WCET is quantified in 
terms of the return level  (Rm) which is defined as 
the block maxima value that is expected to be 
exceeded only once in exactly m blocks. On the 
other hand, the WCET of hard RTS is quantified in 
terms of the WCET at risk (WCETaR) which is 
defined as the block maxima value with an 
extremely low probability of being exceeded. Fig. 5 
depicts our proposed WCET estimation procedure. 
It gives the implementation of the procedure 
invoked in line 18 of the main algorithm given in 
fig. 2.  As shown in fig. 5, WCET estimates are 
based on the GEV cumulative distribution function 
(CDF) which can be easily obtained by integrating 
the GEV PDF. Once the CDF is obtained, its inverse 
can be used to make WCET estimates for either soft 
or hard real-time systems.  

Fig. 5: WCET Calculation Procedure. 
 
3.3 Modelling of Real-Time Embedded 
Control Systems (RTECS). 
 
This part studies  the impact of processing delays 
caused by leakage-saving mechanisms on the 
schedulability of control tasks and, therefore, on the 
performance and stability of the controlled 
processes. RTECS models have been created using 
TrueTime [54]. TrueTime is a Matlab/Simulink-
based package that can be used to simulate the 
temporal behavior of RTECS systems in which 
control algorithms are implemented as real-time 
tasks managed by a multitasking real-time kernel. 
The real-time kernel emulates the fundamental 
operation of a real-time operating system (RTOS).  
In this work, three types of RTECS models have 
been studied: A) a standalone RTECS in which a 
single physical plant is controlled by a CPU with 
RTOS, B) a standalone RTECS where multiple 
physical plants are controlled by a single CPU with 
multitasking RTOS. C) A networked RTECS in 
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which control system’s components i.e. sensors, 
actuators and the controller process are 
communicating via a computer network.  As 
mentioned before, control algorithms, in all 
scenarios, are implemented as real-time tasks. These 
tasks can be used to simulated both periodic and 
aperiodic activities. Associated with each task are a 
set of parameters that include task name, a release 
time which defines the time instant at which the task 
becomes ready to execute, a worst-case execution 
time (WCET) which is the maximum time budget 
allocated for a task, relative and absolute deadlines 
that define the time instant by which the task should 
finish its execution and a period which defines the 
exact difference between the releases of two 
consecutive instants of a particular task. Whereas 
some attributes like period and priority are kept 
constant, other attributes such as release time and 
absolute deadline are constantly updated by the real-
time kernel.  Most importantly, the   WCET of each 
task can be set as a constant, a data-dependent value 
or a random variable. In this work, the WCET of 
each control task is modeled as a random variable 
generated from a particular GEV distribution. The 
selection of a particular GEV distribution depends 
on the used low-leakage technique and the cache 
level on which that technique is applied.  

4. Results and Analysis 
This section presents and analyzes the results that 
have been obtained by applying the experimental 
procedure outlined in the previous section. 
 
4.1 Power Estimation Results 
This section gives a comparative analysis between 
Gated-Vss and Drowsy cache in terms of their net 
power savings (NPS). Both techniques have been 
applied on L-1 I-Cache, L-1 D-Cache and L-2 
unified cache. The aforementioned cache levels 
have been tested in a mutually exclusive manner i.e. 
only one cache level is put in low-leakage mode at a 
time while other levels are assumed to be in normal 
mode where no leakage-saving mechanism is 
applied. Fig. 6 compares the net power savings 
achieved by Gated-Vss and Drowsy cache 
techniques when applied on the L-1 D-Cache. Each 
bar represents the average net savings among the 
used benchmarks. The observations that can be 
made from this figure are twofold; first: the average 
net power savings, in both cases, is directly 
proportional to the LPI value; small values of LPI 
will prematurely put the cache line into low-leakage 
mode leading to a situation in which leakage-power 

savings are offset by the dynamic power caused by 
extra penalty cycles required to retain the cache line 
in the normal access mode. Second, Gated-Vss 
achieves higher average net power savings, as 
compared to Drowsy cache, at all values of LPI 
since it completely turns the cache line off which in 
turn leads to a zero leakage power consumption.  
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Fig. 6: L-1 D-Cache Power Savings. 

 
On the other hand, fig. 7 depicts the average net 
power savings achieved by the two techniques when 
applied on L-1 I-Cache. Fig. 7 confirms the first 
observation that has been noticed in fig. 6. 
However, it shows a totally different behavior where 
Drowsy cache technique outperforms Gated-Vss at 
all possible LPI values; L-1 I-Cache has a much 
higher access rate as compared to the L-1 D-Cache. 
The access rate is defined as the number of cache 
accesses per cycle. Whereas the I-Cache is accessed 
at least once every clock cycle, the D-Cache will be 
accessed in only  a particular portion of cycles 
which depends on the frequency of memory access 
instructions. 
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Fig. 7: L-1 I-Cache Power Savings. 

 
Consequently, applying the Gated-Vss technique on 
the L-1 I-Cache has led to frequent accesses to the 
lower levels of the memory hierarchy. Such 
accesses require high dynamic power consumption 
which can ultimately outweigh the leakage savings 
achieved by the Gated-Vss technique. Moreover, the 
Drowsy cache technique does not incur any extra 
accesses to the lower levels of the memory 
hierarchy and, therefore, has achieved much better 
power savings when applied on the L-1 I-Cache.  
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  Nevertheless, the average net power savings 
obtained by applying either of the techniques on L-1 
I-Cache is smaller than that of the L-1 D-Cache. 
Finally, fig. 8 summarizes the average net power 
savings obtained by applying the two techniques on 
the unified L-2 cache. Fig. 8 also reveals the fact 
that power savings increase as the ILP value 
increases. In addition, the two techniques achieve 
almost equal net power savings. This observation 
can be explained as follows: Gated-Vss technique 
saves more leakage power but leads to high dynamic 
power consumption since a cache miss induced by 
putting a L-2 cache line into power-off mode 
requires an a access  to the off-chip resources which 
consume extremely more power as compared to on-
chip resources. On the other hand, Drowsy cache 
technique saves less leakage power but does not 
cause any extra accesses to the off-chip resources 
and, consequently, consume less dynamic power as 
compared to the Gated-Vss technique. Therefore, 
the two techniques appear to be identical in their 
potential power savings.  
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Fig. 8: L-2 Cache Power Savings. 
 
4.2 Statistical WCET Estimation 
This section shows and compares WCET estimates 
under Gated-Vss and Drowsy cache techniques at 
different cache levels. This analysis was performed 
based on the insertsort benchmark [55]. This 
benchmark has been tested with an integer array of 
one million elements. Several input patterns have 
created and one hundred of them have been chosen 
using the SRS method for ETP generation. Each 
input will be run on the 48 configurations provided 
by the PB matrix. Hence, each ETP consists of 4800 
execution time value. There are three ETPs to test 
each particular cache level i.e. L-1 I-Cache, L-1 D-
Cache and L-2 U-Cache. Table 6 gives the GEV 
maximum likelihood parameter estimates obtained 
by applying the algorithm given in fig. 2 on the 
ETPs generated for L-1 D-Cache analysis. 

Table 6: GEV Parameters for L-1 D-Cache. 

Mode Parameter 
ξ σ µ 

Base 0.0533 0.6363 1.5149 
Gated-Vss 0.1442 2.5114 4.880 

Drowsy 0.0654 0.6489 1.6722 
 
The base mode indicates the case when no leakage-
saving mechanism is applied on any of the cache 
levels. These parameters can then be used to 
construct the GEV PDF and CDF upon which 
WCET estimates can be made. The quality of the 
ETP to GEV fit can be assessed visually by 
investigating the fitted PDF and CDF and 
comparing them against the histogram and the 
empirical CDF of the respective ETP, respectively. 
This step is summarized in fig. 9 and fig. 10. It can 
be observed that the empirical and estimated counter 
parts go in harmony with each other.   The results 
shown in fig. 9 and fig. 10 in conjunction with the 
parameters given in table 6 indicate that the 
temporal behavior of the processor when the L-1 D-
Cache is operated in the Drowsy mode is almost 
identical to that of the base mode where no leakage-
saving mechanism is applied.  Furthermore, the 
Gated-Vss mode has a higher parameter values and 
different tail behavior as compared to the other two 
modes. On the other hand, table 7 lists the GEV’s 
maximum likelihood parameters estimated by 
applying the GEV fitting algorithm on the ETPs 
generated for the L-1 I-Cache. Based on table 7, it 
can be observed that the Drowsy mode has a close 
parameter estimates to that of the base mode while 
the Gated-Vss mode has higher parameter values as 
compared to the two other modes. 

Table 7: GEV Parameters for L-1 I-Cache. 

Mode Parameter 
ξ σ µ 

Base 0.0533 0.6363 1.5149 
Gated-Vss 0.8275 5.7159 6.6971 

Drowsy 0.1182 0.7859 1.8875 
 
Moreover, the GEV distribution under both leakage-
saving techniques has higher parameter estimates 
when compared to the case of L-1 D-Cache. 
Consequently, applying the same leakage-saving 
technique on different cache levels could potentially 
lead to different tail behavior of the GEV 
distribution which in turn can lead to different 
WCET estimates. This fact can be proved 
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graphically by comparing the empirical and fitted 
PDF and CDF functions. 
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(a) L-1 D-Cache Base PDF 
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(b) L-1 D-Cache Gated-Vss PDF 
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(c) L-1 D-Cache Drowsy Cache PDF 

Fig. 9: L-1 D-Cache PDF. 
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(a) L-1 D-Cache Base CDF 
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(b) L-1 D-Cache Gated-Vss CDF 
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(c) L-1 D-Cache Drowsy Cache CDF 

Fig. 10: L-1 D-Cache CDF. 
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Fig. 11 shows the histogram of the generated ETP, 
for L-1 I-Cache, overlaid with the PDF of the fitted 
GEV distribution. Similarly, Fig. 12 shows the 
empirical and fitted CDF functions. Based on fig.  
9-12, it is apparent that the fitted and empirical 

distributions are consistent with each other. 
Moreover, both fitted and empirical distributions 
under Drowsy mode are almost identical to those 
estimated under the base mode. 
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(a) L-1 I-Cache Gated-Vss PDF 
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(a) L-1 I-Cache Gated-Vss CDF 
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(b) L-1 I-Cache Drowsy PDF.  

 
Fig. 11: L-1 I-Cache PDF. 
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(b) L-1 I-Cache Drowsy CDF.  

 
Fig. 12: L-1 I-Cache CDF. 

 
 
Hence, the temporal behavior of the processor under 
Drowsy mode is very close to that under base mode. 
Consequently, the processor can still provide the 
same level of time-predictability while at the same 
time consuming less power as compared to the base 
mode. On the other hand, for both L-1 I-Cache and 
L-1 D-Cache, the fitted GEV distributions under 
Gated-Vss mode are different from that of the base 
mode which, consequently, suggests a different 
temporal behavior from that observed under base 
and Drowsy modes. Hence, applying the Gated-Vss 
technique could potentially lead to different degree 
of time-predictability as compared to the base mode 

Albeit providing significant leakage-savings 
especially when applied on L-1 D-Cache. 
Furthermore, table 8 shows the maximum likelihood 
parameter estimates for the GEV distributions 
obtained by applying the GEV fitting algorithm on 
the ETPs of the L-2 U-Cache.  

Table 8: GEV Parameters for L-2 U-Cache. 

Mode Parameter 
ξ σ µ 

Base 0.0533 0.6363 1.5149 
Gated-Vss 0.3767 6.3096 8.2498 

Drowsy 0.0618 0.7732 1.8407 
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Based on table 8, it is apparent that Gated-Vss mode 
has higher parameter estimates as compared to the 
other two modes.In addition, the GEV parameters 
for the Drowsy mode are very close to those of the 
base mode. Comparing these parameters with 
previous estimates, it can be noted that applying the 
Drowsy mode on L-1 D-Cache or L-2 U-Cache 

Would result in a temporal behavior that is to 
somehow  identical to that of the base mode where 
no leakage-saving mechanism is applied. Moreover, 
the Gated-Vss technique yields a higher parameter 
estimates and, in turn, different temporal behavior 
as compared to the other modes.  
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(a) L-2 U-Cache Gated-Vss PDF 
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(a) L-2 U-Cache Gated-Vss CDF 
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(b) L-2 U-Cache Drowsy Cache PDF 

 
Fig. 13: L-2 U-Cache PDF. 
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(b) L-2 U-Cache Drowsy Cache CDF. 

 
Fig. 14: L-2 U-Cache CDF. 

 

Similar to the previous cases, the quality of L-2 U-
Cache ETP to GEV fit can be assessed graphically 
as shown in fig. 13 and fig. 14. As shown in the 
aforementioned figures, the histogram and the 
empirical CDF of the generated ETP are consistent 
with the fitted PDF and CDF of the GEV 
distribution.  Furthermore, the PDF and CDF of the  
GEV generated under Drowsy cache mode are 
always very close to those of the base mode. On the 
other hand, the Gated-Vss mode has always 
different shape and longer tail behaviour in its PDF 
and CDF as compared to other modes of operation. 
The impact of such shape and tail behaviour 

differences will be further analyzed in the next 
paragraphs. Once the fitted GEV distributions for 
different low-leakage mechanisms at various cache 
levels have been obtained, they can be used to make 
WCET estimates for both soft and hard RTSs.Fig. 
15 shows the WCETaR estimates for a processor in 
which the L-1 D-Cache is put into low-leakage 
mode. The WCETaR estimates are made at different 
exceedance probabilities (Pe). It can be observed 
that the Gated-Vss technique leads to higher 
WCETaR estimates as compared to the other modes 
while the Drowsy mode yields estimates that are 
very close to the base mode. In order to quantify the 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 96 Volume 12, 2015



impact of such discrepancy, in WCET estimates, on 
the suitability of leakage-saving mechanisms for 
RTSs, we propose the Degree of Predictability 
(DoP) measure. The DoP is defined as follows: 

*100%B
LK

WCERaRDoP
WCETaR

=      (5) 

Where WCETaRB  and WCETaRLK are the WCETaR 
estimates in the base and low-leakage modes, 
respectively.  
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Fig. 15: L-1 D-Cache WCETaR.                 

Fig. 16 depicts and compares the DoP values under 
Gated-Vss and Drowsy cache modes. The DoP 
values under the Drowsy mode are much higher 
than those of the Gated-Vss mode; the WCETaR 
values under the Drowsy mode are very close to the 
estimates made under the base mode.  
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Fig. 16: DoP Comparison for L-1 D-Cache. 

On the other hand, fig. 17 shows the WCETaR 
estimates assuming that the L-1 I-Cache is put into 
low-leakage mode while other levels are left intact. 
Fig. 17 confirms the fact that Gated-Vss always 
leads to higher WCET estimates as compared to 
other modes. Moreover, it can be noticed that 
WCET estimates under low-leakage L-1 I-Cache are 
higher than those made under low-leakage L-1 D-
Cache. In addition, Fig. 18 compares the DoP values 

assuming a low-leakage L-1 I-Cache. The 
observations that can be made based on fig. 18 are 
twofold; first, using Gated-Vss technique introduces 
higher degree of unpredictability in the temporal 
behaviour of the processor as compared to the 
Drowsy cache mode. Second, the DoP under low-
leakage L-1 I-Cache is always lower than the DoP 
under low-leakage L-1 D-Cache. Hence, from time-
predictability perspective, it is preferred to apply 
leakage-saving mechanisms on L-1 D-Cache rather 
than applying it on L-1 I-Cache.   
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Fig. 17: WCETaR Estimates for L-1 I-Cache. 
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Fig. 18: DoP Comparison for L-1 I-Cache. 
 
Furthermore, Fig. 19 gives the WCETaR values 
assuming a low-leakage L-2 U-Cache. Fig. 19 also 
confirms that Drowsy cache mode provides a close 
estimates to those made under base mode whereas 
Gated-Vss technique results in a wide predictability 
gap as compared to the base mode. Moreover, 
WCET estimates obtained under low-leakage L-2 
U-Cache are higher than that of the L-1 D-Cache 
but lower than that of the L-1 I-Cache. The 
suitability of using low-leakage L-2 U-Cache in 
hard real-time systems can be evaluated by means of 
the DoP metric. Fig. 20 summarizes the DoP values 
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under possible L-2 U-Cache leakage-saving modes. 
By analyzing the results provided in fig. 20, it is 
clear that Drowsy L-2 U-Cache provides much 
better DoP as compared to the Gated-Vss one. 
However, the achieved level of predictability is less 
than that obtained by applying the same low-leakage 
mechanism on the L-1 D-Cache. 
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Fig. 19: WCETaR Estimates for L-2 U-Cache. 
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Fig. 20: DoP Comparison for L-2 U-Cache. 

 
Thus, it can be concluded that applying the Drowsy 
cache technique on L-1 D-Cache provides high level 
of predictability and, consequently, represents a 
viable design consideration in low-leakage hard 
real-time systems. While the previous analysis 
serves as a solid guideline for hard RTS designs, it 
may not be as helpful for soft RTS analysis. Hence, 
the impact of each leakage-saving mechanism on 
the time predictability of such systems has been 
quantified in terms of another metric which is the 
return level (Rm). Table 9 shows the return level 
values for different values of m. It gives all possible 
combinations of leakage-saving mechanism and 
cache levels. Several observations can be made 

based on table 9: First, applying the Gated-Vss 
technique on any cache level results in higher Rm 
values as compared to the other modes. Second, 
applying the Drowsy mode one different cache 
levels causes varying degrees of proximity to the 
base mode; a Drowsy L-1 D-Cache or L-2 U-Cache 
produce Rm values that are closer to the base mode 
as compared to that of the L-1 I-Cache. 
 

Table 9: Return Level Values. 

Mode L-1 D-Cache 
R100 R400 R800 R1000 

Base 4.83 6.00 6.62 6.83 
Gated-Vss 21.28 28.79 33.14 34.63 

Drowsy 5.15 6.43 7.11 7.34 

Mode L-1 I-Cache 
R100 R400 R800 R1000 

Base 4.83 6.00 6.62 6.83 
Gated-Vss 310.66 981.92 1743.60 2097.5 

Drowsy 6.69 8.73 9.89 10.28 

Mode L-2 U-Cache 
R100 R400 R800 R1000 

Base 4.83 6.00 6.62 6.83 
Gated-Vss 86.26 151.48 199.26 217.50 

Drowsy 5.95 7.45 8.24 8.50 
 
Third, applying the Drowsy mode on any cache 
level tends to be more beneficial , from temporal 
perspective, than applying the Gated-Vss technique.  
In order to quantify the suitability of every 
combination of cache level and leakage-saving 
mechanism for use in soft RTS, we propose the soft 
unpredictability factor (SUF) as follows: 

m LK
m b

R
SUF

R
−

−
=                   (6) 

Where: Rm-LK and Rm-b are the return level values 
under the low-leakage and base modes respectively. 
Eq. (6) computes the factor by which Rm-LK is higher 
than Rm-b. Table 10 shows the values of SUF under 
all possible combinations of cache level, leakage-
saving mechanism and return level. The level of 
predictability provided at each possible value of Rm 
is inversely proportional to the SUF at this value. 
However, depending on the value of SUF only may 
not clearly state the impact of each leakage-saving 
technique on the predictability of soft RTS. Hence, 
another comprehensive metric has been proposed 
and computed through an iterative process. This 
metric is referred to as Loss of Schedulability (LoS). 
Every iteration of this process consists of the 
following steps: 
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Table 10: SUF Values. 

Mode L-1 D-Cache 
R100 R400 R800 R1000 

Gated-Vss 4.41 4.80 5.01 5.07 
Drowsy 1.07 1.07 1.07 1.07 

Mode L-1 I-Cache 
R100 R400 R800 R1000 

Gated-Vss 64.32 163.65 263.38 307.10 
Drowsy 1.39 1.46 1.49 1.51 

Mode L-2 U-Cache 
R100 R400 R800 R1000 

Gated-Vss 17.86 25.25 30.10 31.84 
Drowsy 1.23 1.24 1.24 1.24 

 
A. Generate a total of 1000 random task sets. 

Each set contains four periodic tasks.  
B. Loop through all task sets generated in step 

A and identify the task sets that are 
schedulable according to a fixed priority 
scheduling algorithm and add them to the 
set Tsched. The number of tasks in this set is 
denoted as NUMsched . Note: a task set is 
schedulable according to a particular 
scheduling algorithm if every task in this set 
finishes before its deadline. 

C. For each task set in Tsched, multiply the 
execution time of every task by the 
corresponding SUF value.  

D. After updating the execution time of all 
tasks, iterate through all tasks sets and 
identify the tasks sets that became non-
schedulable according to the scheduling 
algorithm used in step B. the number of 
non-schedulable tasks sets is denoted as 
NUMnon-sched . 

E. Calculate LoS as (NUMnon-sched / NUMsched ) 
* 100%. 

In this work, the iterative process has been 
performed assuming 1000 iterations. The rate-
monotonic (RM) scheduling algorithm has been 
used and its schedulability test has been performed 
using the Time-Demand Analysis (TDA) method 
[1]. Details on the RM algorithm and the TDA 
method can be found in [1]. Table 11 shows the LoS 
value under all possible leakage-saving techniques 
and cache levels. The reported LoS value is the 
average among all iterations of the iterative process. 
According to table 11, almost all tasks will miss 
their deadlines in two cases: 1) when the Gated-Vss 
technique is employed on any cache level, 2) when 

the Drowsy cache technique is applied on the L-1 I-
Cache. Moreover, applying the Drowsy cache 
technique on L-1 D-Cache leads to a LoS of 0% 
which means that no task will miss its deadline due 
to the application of this technique, on L-1 D-Cache, 
as compared to the base mode. 
 

  Table 11: LoS Values.  

Mode L-1 D-Cache 
R100 R400 R800 R1000 

Gated-Vss 100% 100% 100% 100% 
Drowsy 0% 0% 0% 0% 

Mode L-1 I-Cache 
R100 R400 R800 R1000 

Gated-Vss 100% 100% 100% 100% 
Drowsy 98% 100% 100% 100% 

Mode L-2 U-Cache 
R100 R400 R800 R1000 

Gated-Vss 100% 100% 100% 100% 
Drowsy 13.68% 22.9 % 22.95% 31.24 % 

 
Furthermore, applying the Drowsy cache technique 
on L-2 U-Cache provides an acceptable range of 
LoS values. In summary, it can be concluded that 
Drowsy L-1 D-Cache is a suitable low-leakage 
design alternative for systems where tasks’ 
usefulness decreases sharply after missing its 
deadline while Drowsy L-2 U-Cache can be an 
acceptable option for non-critical soft RTSs i.e. 
systems where task’s usefulness decreases gradually 
after missing its deadline.  

4.3 Analysis of RTECS Temporal Behaviour 
In this section, the fitted GEV distributions and 
associated WCET estimates will be employed to 
study the impact of leakage-reduction techniques on 
the temporal behaviour and stability of RTECS in 
which a physical plant in controller by a resource-
constrained computer with an RTOS. Fig. 21 shows 
a model of an RTECS in which a DC servo motor in 
controller by a digital computer. A Proportional 
Integral Derivative (PID) controller [56] is used to 
control the motor. A digitized form the PID 
controller is employed and implemented as a 
periodic task inside the RTOS. Periodically, the 
controlled process is sampled and its state variable 
(y) is compared with a reference input (r). The result 
of this comparison will be used as an input to the 
PID control algorithm which will compute an 
appropriate control signal (u) based on which the 
motor behaviour will be adjusted. The execution 
time of the PID control task is crucial to the 
operation of this RTECS; an excessive delay in the 
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computation of the control signal (u) could 
potentially lead to instability in the operation of the 
DC servo motor. In order to study the temporal 
behaviour of the system shown in fig. 21 under a 
particular low-leakage mechanism, the execution 
time of the control task is set as a random variable 
generated from the corresponding GEV distribution. 
Fig. 22 illustrates the behaviour of the RTECS 
shown in fig. 21 under the base mode where no 
leakage mechanism is applied. The upper part of fig. 
22 shows the reference input r(t) overlaid with the 
actual output (y(t)) of the controlled DC motor. On 
the other hand, the lower part shows the control 
signal u(t) generated by the PID control algorithm. 
Overall, it can be observed that the DC motor has a 
satisfactory control performance and stability level 
under the base mode where no leakage-saving 

mechanism is applied. On the other hand, fig. 23 
shows the temporal behaviour of the RTECS where 
the underlying computer has a Drowsy L-1 D-
Cache. It indicates that the performance and stability 
of the RTECS is almost identical to that of the base 
mode where no leakage-saving technique is applied. 
Moreover, fig. 24 depicts the performance of the 
RTECS where the control task is executed by a 
computer with Gated-Vss technique is applied on 
the L-1 D-Cache. Fig. 24 illustrates the fact that the 
Gated-Vss technique has caused a poor control 
performance as compared to the other two modes; 
Gated-Vss technique has caused an elevation in the 
control task’s execution time that the controller does 
not respond in a timely manner to the changes in the 
controlled process output.   

Fig. 21: A single-task RTECS Model. 
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Fig. 22: Single-task RTECS Performance Under Base 

Mode. 
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Fig. 23: Single-task RTECS Performance Under 

Drowsy L-1 D-Cache. 
Furthermore, fig. 25 depicts the performance of the 
single-task RTECS assuming that the computer has 
a Drowsy L-1 I-Cache. Apparently, the performance 
of the RTECS is identical to that under the base 
mode. The performance of the single-task RTECS 

has also been studied in a system where the 
controlling computer applies Gated-Vss on the L-1 
I-Cache as shown in fig. 26. Fig. 26 shows that the 
application of Gated-Vss technique on L-1 I-Cache 
has resulted in a system; applying the Gated-Vss 
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technique on L-1 I-Cache has yielded an execution 
time that is much higher than the sampling period of 
the control algorithm and , in turn, resulted in a 
situation where the controller cannot  keep pace 
with the changes in the motor’s state variable. 
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Fig. 24: Single-task RTECS Performance Under 
Gated-Vss L-1 D-Cache. 
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Fig. 25: Single-task RTECS Performance Under 
Drowsy L-1 I-Cache. 
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Fig. 26: Single-task RTECS Performance Under 
Gated-Vss L-1 I-Cache. 

Finally, Fig. 27 and 28 shows the performance of 
the single-task RTECS under Drowsy and Gated-
Vss L-2 U-Cache, respectively. Once again, the 
Drowsy cache technique outperforms the Gated-Vss 
technique and leads to better control performance 
and system stability when applied on the L-2 U-
Cache. As shown in fig. 28, the Gated-Vss 
technique has also resulted in extremely poor 
control performance and unstable system when 
applied on the L-2 U-Cache.   
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Fig. 27: Single-task RTECS Performance Under 

Drowsy L-2 U-Cache. 
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Fig. 28: Single-task RTECS Performance Under 
Gated-Vss L-2 U-Cache. 

On the other hand, fig. 29 shows a TrueTime model 
of a multi-task RTECS with three DC servo motors 
controlled by a single computer equipped an RTOS. 
The three motors are controlled by PID control 
algorithms with different sampling period for each 
motor. The sampling periods of DC servos 1, 2 and 
3 are set as 6, 5 and 4 ns respectively. Each 
algorithm is implemented as a real-time task within 
the RTOS kernel.  The RTOS uses the preemptive 
earliest-deadline first (EDF) algorithm [1] to 
schedule the executing control tasks. According to 
the EDF algorithm, the task with earliest deadline 
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has the highest priority and can preempt any other 
executing task. The EDF algorithm has been 
selected due to its optimality; it can find a feasible 

task schedule provided that one exists. The control 
algorithms have been executed under different 
sampling periods in order to create a task set with 

Fig. 29: A multi-task RTECS Model. 

Different priorities. Having tasks with different 
priorities can create preemption points under which 
the impact of execution time variations, due to 
leakage-saving mechanism, can be studied not only 
for a single-task but also for other competing tasks 
in the system especially those tasks with lower 
priority. Like the previous RTECS, the impact of 
each leakage-saving mechanism on the control 
performance and stability of each individual DC 
servo motor and on the system as a whole is 
modeled by setting the execution time of the control 
tasks as a random variable generated from a 
particular GEV distribution. In this model, the 
execution time of the three control tasks, under any 
mode, is generated from the same GEV distribution 
since they are executing on the same computer. Fig. 
30 shows the results of simulating the multi-task 
RTECS in base mode. The upper part of this figure 
shows control task’s schedule while the lower part 
shows the performance of each DC servo motor as 
compared to the reference input. The control tasks 
of DC motor i is denoted as Ti for i = 1, 2, 3. At any 
time instant, only one control task can be executing 
while other tasks can be either idle or preempted. 
Hence, any task can be in one of three possible 
states: executing, idle, preempted. These states can 
be seen as high, medium or low levels on the 
schedule chart,  respectively.  As shown in fig. 30-a, 
control tasks has gone through an alternating 
priority behavior, for example, task T1 may have 
higher priority than T2 at some point of time while 
T2 may have higher priority in another time instant; 

the EDF algorithm is a dynamic priority scheduling 
algorithm in which instances of the same task may 
execute at different priority levels throughout 
system operation. 
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(a) Control tasks schedule. 
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(b) Performance of multi-task RTECS in base mode. 

Fig. 30: Simulation of Multi-task RTECS in Base 
Mode.  
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This fact is important in two main facets: it ensures 
system fairness where each task gains access to the 
underlying computer and ensures that control tasks 
can mutually affect each other. The later point is 
very important since it allows RTS designers to 
study low-leakage mechanisms under high 
contention levels and, therefore, under situations 
that aggressively exercise the computer’s memory 
system. Furthermore, fig. 30-b shows the 
performance of each controlled motor, under the 
base mode. Despite the large number of 

preemptions, the system can, in general, achieve a 
satisfactory control performance and stability 
margins.  On the other hand, The performance of the 
multi-task RTECS has also been observed under 
leakage-saving techniques at L-1 I-Cache, L-1 D-
Cache and L-2 U-Cache. Fig. 31, 32 and 33 show 
the schedule of control tasks besides the 
performance of the controlled processes under low-
leakage L-1 D-Cache, L-1 I-Cache and L2- U-
Cache, respectively.  
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(a) Drowsy mode schedule. 
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(b) Gated-Vss mode schedule. 
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(c) Drowsy mode performance. 
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(d) Gated-Vss mode performance. 

Fig. 31: Simulation of Multi-task RTECS Under Low-leakage L-1 D-Cache. 

They reveal two main observations: first, the control 
task’s schedule under Drowsy mode is almost 
identical to that of the base mode; Although 
applying Drowsy mode leads to an increase in 
control algorithm’s execution time, this increase is 
very small that competing tasks do not undergo long 
preemption times which, therefore, has given each 
control algorithm a sufficient amount of processor’s 
time to respond to changes in the state variable of 
the controlled process. Hence, the RTECS has 
achieved an acceptable control performance similar 
to that of the base mode as shown in part (c) of fig. 
31, 32 and 33. Second, the control task’s schedule 
and the corresponding control performance shows a 

totally different behavior under Gated-Vss mode; 
applying the Gated-Vss technique on any cache 
level has caused a significant increase in the control 
algorithm’s execution time which , in turn, has 
caused long preemption delays. A long preemption 
delay would normally prevent some control tasks 
from gaining access to the computer. Hence, they 
will not respond to changes in the state variables of 
their respective controlled processor in a timely 
manner. Therefore, the RTECS has encountered a 
very poor and unstable control performance as 
shown in part (d) of the aforementioned figures. In 
summary, applying the Drowsy cache technique on 
any cache level provides a satisfactory control 
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performance and, consequently, provides a suitable 
design alternative for low-leakage RTECS.  
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(a) Drowsy mode schedule. 
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(b) Gated-Vss mode schedule. 

(c) Drowsy mode performance. 
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(d) Gated-Vss mode performance. 

 
Fig. 32: Simulation of Multi-task RTECS Under Low-leakage L-1 I-Cache. 

 
On the other hand, fig. 34 shows a model for a 
networked RTECS. In this model, the components 
of the control loop i.e. sensor, actuator and the 
controller (computer) are assigned to different nodes 
in the network.  The network block is event-driven 
and executes when a message enters or leaves the 
network [55]. In this block, users can change the 
transmission rate of the network, the medium access 
control (MAC) protocol such as CSMA/CD, 
CSMA/CA, round robin, FDMA and TDMA [55]. 
In this work, the network has been configured with 
CSMA/CD (Ethernet) MAC protocol, a data rate of 
80Kbps and a minimum frame size of 80 bits.    
Whereas the sensor node works in a time-driven 
manner, the actuator and the controller are event-
driven components. Periodically, the sensor 
measures the current state of the DC motor and 
sends the sampled value to the controller over the 
network.  The controller computes the appropriate 
control signal, based on a PID control algorithm, 
and sends this signal to the actuator node via the 

network. Finally, the state of the controller DC 
motor will be actuated accordingly. Hence, the total 
roundtrip time  (T) taken between sensing and 
actuation can be computed as follows: 

sc p caT t t t= + +               (7) 
Such that: tsc denotes the sensor-to-controller delay, 
tca is the controller-to-actuator delay and tp is the 
processing delay taken by the controller (computer) 
to compute the appropriate control signal based on 
the value received from the sensor node. While the 
previous research efforts [38-43 ] have focused on 
only network-induced delays, our work has focused 
on computer-induced delays and shows its 
importance in the temporal behavior and 
performance of the networked control loop. Similar 
to the previous models, the impact of leakage-saving 
mechanisms on the performance of the networked 
RTECS model has been captured by setting the 
execution time of The control algorithm as a random 
variable generated from a specific GEV distribution. 
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(a) Drowsy mode schedule. 
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(b) Gated-Vss mode schedule. 
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(c) Drowsy mode performance.    
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(d) Gated-Vss mode performance. 

 
Fig. 33: Simulation of Multi-task RTECS Under Low-leakage L-2 U-Cache. 

 

 
Fig. 34: Networked RTECS Model.
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The GEV distribution is selected based on the 
leakage-saving mode and the cache level on which 
this mode is applied. Fig. 35 shows the performance 
of the DC motor assuming that the controller in 
operating in the base mode where no leakage-saving 
mechanism is applied. It shows that the output of the 
DC motor settles to the level of the reference input 
in a very small amount of time after undergoing a 
small overshoot level. Overall, the RTECS has 
achieved a satisfactory temporal behavior and 
control performance. 

-2

-1

0

1

2

r(
t)

 , 
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

Fig. 35: Performance of Networked RTECS in Base 
Mode. 

In addition, fig. 36 illustrates the control 
performance of the networked RTECS assuming a 
low-leakage L-1 D-Cache. Fig. 36-a shows the 
impact of applying Drowsy cache technique on the 
performance of the networked RTECS. It points out 
the the performance of the networked RTECS in 

presence of Drowsy L-1 D-Cache is identical to that 
achieved under the base mode. On the other hand, 
Fig. 36-b gives the performance of the networked 
RTECS in presence of a controller (computer) with 
an L-1 D-Cache operated in Gated-Vss mode. 
Apparently, the application of the Gated-Vss 
techniques on the L-1 D-Cache has resulted in a 
system with poor control performance. The 
waveform of the DC motor’s output shows a high 
overshoot levels and very long settling time. In 
other words, the motor keeps fluctuating without 
settling to the steady-state case marked by the 
reference input signal. Therefore, it can be 
concluded that applying the Gated-Vss technique on 
L-1 D-Cache has caused a situation in which the 
time required to process a single sample, sent by the 
sensor, is very long that other samples cannot be 
processed in a timely manner and, consequently, has 
prevented the actuator from updating the motor’s 
state appropriately. Hence, unlike the assumption 
made by previous work [38-43], the processing 
delay induced by the controller especially under 
low-leakage modes cannot be hidden or overlapped 
with network-induced delays and should be handled 
appropriately in order to maintain a satisfactory 
performance of networked control loops. On the 
other hand, fig. 37 and 38 depicts the performance 
of the networked RTECS under low-leakage L-1 I-
Cache and L-2 U-Cache, respectively. They confirm 
the observations that have been made based on fig. 
36.   
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(b) Gated-Vss mode.  

Fig. 36: Networked RTECS Performance Under Low-leakage L-1 D-Cache.
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(b) Gated-Vss mode.  

Fig. 37: Networked RTECS Performance Under Low-leakage L-1 I-Cache. 
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(b) Gated-Vss mode. 

Fig. 38: Networked RTECS Performance Under Low-leakage L-2 U-Cache. 
 
Finally, Table 12 summarizes and compares Drowsy 
cache and Gated-Vss techniques based on power 
savings, time-predictability and control 
performance. In other words, it compares the two 
techniques based on the best results each technique 
has achieved under each of the aforementioned 
parameters. In this table, the power saving column 
gives the largest net power saving achieved by the 

corresponding technique among all possible values 
of LPI, the DOP and LoS columns quantify the 
time-predictability of the processor in presence of 
leakage-saving techniques and the control 
performance describes the performance of single-
task, multi-task and networked RTECSs under every 
combination of leakage-saving technique and the 
cache level on which this technique is applied.  

Table 12: Trade-offs Comparison between Drowsy Cache and Gated-Vss Techniques. 

Technique Cache level 
Parameter 

Power Saving (%) DoP (%) LoS (%) Control Performance 
Drowsy Cache L-1 D-Cache 33.61 93.05 0 Good 

L-1 I-Cache 32.23 66.39 98 Good 
L-2 U-Cache 50.21 80.30 13.68  Good 

Gated-Vss L-1 D-Cache 53.64 19.72  100 Poor 
L-1 I-Cache 15.68 5.42 100 Poor 
L-2 U-Cache 49.93 31.39 100 poor 

 
Several observations can be made based on table 12. 
First, applying the Gated-Vss technique on L-1 D-
Cache has achieved the highest possible net power 

savings as compared to all other alternatives. 
However, this scenario falls short under other 
parameters; it achieves low time-predictability for 
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both hard and soft real-time systems and leads to a 
poor control performance when applied in an 
RTECS. Second, while applying the Drowsy cache 
technique on the L-1 D-Cache leads to relatively 
lower power savings, it has outperformed the Gated-
Vss technique in terms of time-predictability and 
control performance. In fact, this scenario has 
achieved the best time-predictability i.e. DoP and 
LoS values among other design alternatives. 
Moreover, it has resulted in good control 
performance in the underlying RTECS. Third, 
applying the Gated-Vss technique on the L-1 I-
Cache achieves the lowest value of power savings, 
the lowest DOP value, a high LoS value and a poor 
control performance. Hence, this scenario does not 
provide a viable option for low-leakage RTS design. 
On the other hand, employing a Drowsy L-1 I- 
Cache can be a suitable design option for systems 
with non-stringent power constraints and non-
critical timing constraints; this scenario has 
achieved a relatively low power savings and a 
moderate time-predictability with a good control 
performance.  Fourth, while applying the Gated-Vss 
technique has achieved relatively high power 
savings, it has low time-predictability (low DoP 
value and high LoS value) besides leading to a poor 
control performance. Hence, this technique does not 
provide a suitable design alternative for low-leakage 
real-time systems. On the other hand, using a 
Drowsy L-2 U-Cache can achieve high power 
savings, relatively high time predictability and good 
control performance. Therefore, this scenario can be 
considered as an effective design choice for low-
leakage real-time embedded systems. In summary, 
our results indicate the using a Drowsy L-1 D-Cache 
or a Drowsy L-2 U-Cache represent the most 
suitable design alternatives for low-leakage real-
time embedded systems. Comparing these two 
alternatives, it can be observed that a Drowsy L-2 
U-Cache would normally achieve higher power 
savings but a Drowsy L-1 D-Cache can achieve 
higher time-predictability. Therefore, a Drowsy L-2 
U-Cache can be a practical option for systems with 
stringent power constraints and softer timing 
requirements. However, a Drowsy L-1 D-Cache is 
the most feasible leakage-saving technique for 
systems with more critical timing requirements.   
 
5 Conclusion and Future Work 
This paper has extensively tackled the design of 
low-leakage cache hierarchy for embedded real-time 
systems with a single core processor. A 
multidisciplinary research methodology has be 

applied to assess and compare state-preserving and 
state-destroying leakage-saving mechanisms based 
on their power-saving capability and their impact on 
the time-predictability of the underlying processor. 
Our results have shown that applying a state-
preserving technique on particular cache level 
represent the most feasible design alternative in 
which reasonable tradeoff between power-savings 
and time-predictability can be attained. However, 
the decision, of which cache level should be put in 
low-leakage mode, depends the criticality of timing 
requirements and power constraints. 
 
 As a future research, we will study the impact of 
leakage-saving mechanisms on time-predictability 
and performance of multi-core real-time systems 
especially those with heterogeneous architectures 
where each core may apply a different leakage-
saving mechanism.   
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