
On the Design of Time-Predictable Low-Leakage Cache Memory for
Real-Time Embedded Systems

MUTAZ AL-TARAWNEH

Computer Engineering Department

Mu’tah University

P.O. Box 7, Mu’tah 61710

JORDAN

Email: mutaz.altarawneh@mutah.edu.jo

Abstract: - This paper presents a multidisciplinary study that aims at designing a time-predictable low-leakage
cache memory for real-time embedded systems. Both state-preserving and state-destroying leakage-saving
mechanisms have been tested on a superscalar processor with two-level cache hierarchy. Full system simulation
has been used to examine leakage-saving capability of each mechanism. In addition, a statistical approach has
been proposed to study processor’s time-predictability under potential leakage-saving techniques. Furthermore,
the performance of real-time embedded systems in presence of leakage-saving techniques has been thoroughly
analyzed using Matlab/Simulink-based models. Each possible design alternative has been evaluated in terms of
four parameters that include: average power saving, degree of predictability (DoP), loss of schedulability (LoS)
and performance of the underlying embedded system. Our results have shown that applying a state-preserving
leakage-saving mechanism on either first-level data cache or last-level unified cache provides the most viable
design option. The first alternative has achieved an average power saving of 32.61 %, a DoP of 93.05% and a
LoS of 0% while the second alternative has achieved an average power saving of 50.21%, a DoP of 80.30% and
a LoS of 13.68%. Moreover, neither of them has caused any disruption in the performance of the experimental
embedded system models. Consequently, using a first-level data cache with a state-preserving leakage-saving
mechanism represents the best feasible option for systems with very critical timing requirements while
employing a state-preserving low-leakage last-level cache can be the suitable option for systems with soft
timing requirements and stringent power constrains.

Key-Words: - cache memory, real-time, embedded, leakage power, time-predictability, performance.

1 Introduction
Real-time systems (RTS) have already become a
ubiquitous computing platform in which programs
(tasks) should maintain temporal correctness
besides logical correctness [1]. In reality, most
real-time systems are embedded systems where an
embedded processor is employed to control a
physical process [2]. Examples of some fields
where embedded systems can be used include
mobile devices, power plants control, automobile
systems and cyber-physical systems. Nowadays,
real-time applications have become more complex
in terms of their memory footprint and processing
requirements. Hence, their usage in real-time
systems creates overly demanding tasks that
require a very complex processor in order to cope

with their functional and temporal requirements.
To meet these requirements, embedded processors
have employed many performance enhancement
features such as cache memory. Cache memory
leverages the principle of locality of reference and
keeps the most heavily accessed instructions and
data physically close to the processor [3]. Cache
memory is much faster than the main memory and
can run at the processor speed. Therefore, storing
the required instructions and data items in the
cache will reduce the number of clock cycles
needed to fetch them which ,in turn, improves the
overall performance of the processor. However, the
potential performance improvement achieved by
using cache memories comes at the expense of

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 82 Volume 12, 2015

reducing the time predictability required by real-
time systems [4]. Time predictability is a major
concern in the design space of real-time embedded
systems such as automotive systems and nuclear
power plants [5, 6]. Such systems are known by
their strict timing requirements and high cost of
failure and are usually referred to as safety-critical
systems. In this kind of systems, missing the
deadline of a particular task may lead to
catastrophic outcomes and endanger human lives.
Thus, software applications, in these systems, are
implemented as hard real-time tasks with hard
deadlines. A hard deadline is a deadline that should
never be missed [1]. Moreover, real-time
embedded systems often have constrained
resources that should be carefully allocated in order
to provide reasonable resource utilization and
guarantee timing requirements of the running tasks
[2]. In order to guarantee such stringent
requirements, Worst-Case Execution Time
(WCET) analysis is usually employed. Its goal is to
obtain an upper-bound of the execution time of all
tasks such that resource utilization and scheduling
analysis can be studied under worst-case scenarios
[7-9]. However, WCET depends not only on the
running application but also on the micro-
architecture of the host processor. Unfortunately,
most of the performance enhancement hardware
such as cache memories, instruction pipelines and
branch predictors are designed to improve the
average-case performance, not the worst-case
performance. Hence, accurate WCET estimation on
modern processors is very complicated task due to
non-deterministic timing behavior imposed by the
use of performance enhancement hardware. In
particular, modern processors have heavily relied
on cache memory to bridge the widening
performance gap between the processor speed and
the memory speed. Caches, unfortunately, can lead
to unpredictable timing since whether or not a
memory reference will hit in the cache is dependent
on the program’s dynamic behavior i.e. the
interaction between program’s working set and
cache organization [10]. The difference between a
hit and a miss can result in an order of magnitude
difference in the execution time of a program. On
the other hand, power consumption has recently
become a major design concern in high-
performance embedded processors [11, 12].
Although dynamic power -caused by switching
activity- constitutes the majority of power
dissipation in old processors implemented with
large feature sizes, leakage power—caused by
leakage current even when circuits are not

switching— contributes to the majority of power
consumption in modern processors implemented
with nano-scale feature sizes [13,14]. Therefore,
leakage power control has become an essential
design constraint to maintain control of power
dissipation in both general purpose and embedded
processors. Moreover, as cache memories
constitute a significant portion of processor’s
transistor budget, minimizing its leakage power
consumption is of utmost importance to processor
designers [15]. Hence, several leakage-control
mechanisms have been proposed to reduce leakage
power consumption especially in cache memories.
These techniques can be classified as either state-
preserving or state-destroying [16]. In state-
destroying techniques, the cache line is completely
turned which leads to a complete loss of the stored
data. On the other hand, state-preserving
techniques put the cache line into low-power mode
such that its leakage power will be reduced to some
extent while the stored data is still valid for future
usage. This paper studies GatedVss [17] as a
candidate for state-destroying techniques and
Drowsy cache [18] as a state-preserving
alternative. In the domain of real-time embedded
systems, in which embedded processor are
employed, the use of these leakage-power saving
mechanisms introduces some degree of
unpredictability in tasks’ execution time. For
example, in the GatedVss technique; a cache line
will be switched off if it spends a sufficiently long
time interval without being used. Hence, the data
stored in this cache line will be completely lost and
a future access to this line will cause a cache miss
which need more clock cycles to be handled by
accessing lower levels of the memory hierarchy;
this means that the time required to handle a
particular cache reference depends on the current
power mode of that line; this fact leads to timing
unpredictability especially in the contest of real-
time systems. The fact that cache leakage-control
mechanisms cause non-deterministic timing
behavior of embedded processors motivates the
study of WCET in presence of such mechanisms
and the design of low-leakage cache hierarchy that
attains the best tradeoff between leakage power
consumption and time predictability in real-time
embedded processors. This paper addresses leakage
control in real-time systems and makes the
following innovative contributions:

a. Analyzing the potential power savings of each
candidate leakage-saving mechanism based on

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 83 Volume 12, 2015

full-system simulation and realistic processor
configurations.

b. Proposing a statistical approach to estimate
task’s WCET on processors with low-leakage
cache hierarchy. This makes this paper, to the
best of our knowledge, the first research effort
to tackle this issue.

c. Modeling and analyzing the impact of leakage-
saving mechanisms on time predictability and
overall performance of standalone and
networked real-time embedded systems.

d. Identifying the suitable leakage-saving
mechanism for each type of real-time
embedded systems based on the stringency of
its power budget and the criticality of its timing
requirements.

The rest of this paper is organized as follows.
Section 2 summarizes the related work, section 3
describes our methodology, results and analysis are
presented in section 4, and section 5 summarizes
and concludes.

2 Related Work
This section summarizes previous research work
that is closely related to this paper in three main
aspects: WCET estimation, leakage-control in real-
time systems and real-time embedded control of
physical systems.

2.1 WCET Estimation
WCET estimation is an important part in the
analysis of real-time systems. Estimation techniques
can be classified into five main categories [19, 20]:
Static WCET Analysis [21-23], Measurement-based
WCET Analysis [24-26], Hybrid-Measurement–
based WCET Analysis [27, 28], Parametric-WCET
Analysis [29] and Statistical WCET Analysis
[30,31]. In static techniques, a static WCET is made
based on the knowledge of the control-flow graph
(CFG) of the program being analyzed and a model
of the processor on which the program is going to
execute. It is usually performed by the complier.
The WCET is the duration of the longest path
through the CFG. Static WCET estimation usually
involves pessimistic assumptions regarding some
variables such as the number of loop iteration or
unrealistic assumptions about some hardware
components such as assuming a perfect cache level
i.e. a cache level with no misses or a pipelined
processor with no data or control hazards. In other
words, performance enhancement techniques
employed in modern processors such as caching and
pipelining introduces a high degree of difficulty in

applying static estimation methods [32]. In
measurement-based techniques, the program is
executed, for sufficiently large number of times, on
the target processor and the longest observed
execution time will be used as a WCET. This
procedure involves testing the program with
different input combinations that are assumed to be
representative of the whole input space of the
program. However, none of the tested input patterns
may excite the worst-case path of the program. To
remedy this situation, the observed WCET is usually
scaled with an appropriate safety factor; however,
there is no systematic way for choosing such a
factor. In other words, measurement-based
techniques could underestimate the actual WCET of
the program. On the other hand, a hybrid
measurement-based technique combines static and
measurement-based techniques in order to eliminate
the potential overestimation and underestimation
caused by them respectively. In this technique, the
execution times of program segments, generated via
instrumentation points, are collected and used in
subsequent stages of WCET estimation. The
rationale behind this technique is that the WCET of
each program segment has been obtained by
applying representative input patterns. However,
failing to satisfy such assumption may compromise
the final WCET estimate i.e. it may lead to
overestimation or underestimation of the actual
WCET. In parametric WCET estimation, the WCET
estimate is expressed as a closed-form function in
terms of parameters of the program, rather than just
a single numerical value. A parametric WCET
formula contains more information about the
program being analyzed and can be applied in
situations where some parameters are not known
until runtime or to determine which program
segments have more influence on the overall
WCET. However, this technique can be applied for
very small programs with small working sets but not
for large programs with large instruction footprints
and data-set size. Finally, statistical WCET analysis,
to which our proposed technique belongs, applies
statistical methods to obtain a WCET estimate with
an extremely low and quantifiable probability of
being exceeded (e.g. 10-10). The majority of these
techniques are based on Extreme Value Theory
(EVT) [33]. In this type of analysis, execution time
values obtained from end-to-end measurements are
subjected to statistical analysis based on the
techniques of EVT. The outcome of this analysis is
a probability function of execution time from which
WCET estimates, with pre-defined exceedance
probability, can be obtained. Only this category will

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 84 Volume 12, 2015

be elaborated and compared to our proposed
methodology. In [30], execution time measurements
were fit to Gumbel Max distribution and WCET
estimates were obtained using an excess distribution
function. However, their proposed methodology
incorrectly fits raw execution time measurements to
the Gumbel Max distribution; Gumbel Max and
other members of EVT family of distributions are
intended to model random variables that are
minimum or maximum of a large number of other
random variables [20]. Moreover, they did not apply
any Goodness-of-Fit (GOF) test to identify whether
the estimated parameters of the Gumbel Max
distribution can truly fit the measured execution
times. On the other hand, the work presented in [31]
has extended the study of [30] by predicting the
likelihood that the WCET estimate made by EVT
distributions will be exceeded. They have employed
the method of block maxima [33] to fit execution
time measurements to Gumbel Max distribution. In
this method, the measured values will be divided
into blocks, the maximum value in each block will
be observed and then the observed maximum values
will be fitted to the Gumbel Max distribution. In
addition, they have performed a Goodness-of-Fit
analysis to check whether Gumbel Max parameters
actually fit the measured execution time values. Our
work differs from the previous studies in two main
aspects. First, the proposed WCET estimation
technique depends on Generalized Extreme Value
(GEV) distribution which provided more accuracy
as compared to other distributions [34]. Second, the
statistical analysis performed in this work was based
on execution time measurements that take into
account all possible interactions between the
application’s working set and the micro-architecture
of the processor, unlike the previous studies which
have overlooked this issue.
2.2 Leakage Reduction in Cache Memory
Several techniques have been proposed to reduce
leakage power consumption of cache memories.
These techniques can be either state-destroying or
state-preserving [16]. In [17], a state-destroying,
leakage-saving technique was proposed based on a
Gated-Vdd circuit. In this technique, a high-threshold
sleep transistor is used to disconnect a particular
storage cell from Vdd. This technique can achieve
drastic leakage savings since it breaks the
connection with the power supply. However, it can
lead to significant performance losses and dynamic
power consumption due to sate losses [35]. In [18],
a state-preserving leakage-saving mechanism known
as Drowsy cache has been presented and evaluated.

It achieves significant leakage savings by putting a
cache line into low-power “Drowsy” mode. In this
technique, the information stored in the cache line
will be preserved by switching its Vdd to another
power supply that is only 1.5 times the threshold
voltage [16, 35]. In other words, Gated-Vdd
techniques completely turns that cache line off
while Drowsy cache puts a cache line into a low
retention voltage level such that its contents are
retained. Hence, state-preserving techniques
produce much less penalty as compared to state-
destroying ones while the latter provide much more
leakage power savings. However, the primary focus
of the aforementioned studies was leakage-power
savings and the tradeoff achieved with the average-
case performance of the processor. In other words,
they did not study the impact of such techniques on
the worst-case performance of the processor and
time-predictability of real-time systems. On the
other hand, [36] has presented a timing-aware
leakage control mechanism suited for hard real-time
systems. Their proposed methodology relies on
using system slack. They have proposed a joint use
of Gated-Vdd and Drowsy cache based on the overall
utilization of the processor. Their proposed
technique put cache lines into low-leakage mode
such that leakage-power is saved while timing
requirements are met. However, our work differs
from theirs in a primary facet: they have assumed
that the WCET of the program is already known and
did not propose any mechanism to estimate the
WCET of a program in presence of low-leakage
caches.

2.3 Design of Real-Time Embedded Control

Systems
Efficient implementation of a real-time control
system needs a codesign of both computer and
control systems [36]. In other words, the computer
system must be designed such that all functional
requirements are met and the controllers must be
carefully designed taking into account the resource-
constrains of embedded systems [37]. In embedded
control systems, the control algorithm is
implemented as a real-time task that executes
concurrently with other tasks, including other
control tasks. Moreover, embedded systems are
usually resource-constrained in terms of their
processing capability and memory capacity [2].
Therefore, the codesign of computer (scheduling)
and control systems can be stated as follows [36]:
Given a group of physical processes to be controlled
by a computer with limited resources, implement a

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 85 Volume 12, 2015

set of controllers and schedule them as real-time
tasks such that the control performance and
stability of each controlled process is maintained
and optimized.
Previous research efforts [38-43] have studied the
extent to which real-time scheduling can affect the
performance and stability of controlled processes in
both standalone and networked control systems.
However, they have performed their analysis based
on the fact that timing requirements of real-time
tasks can be satisfied by using modern high-
performance processors. Unfortunately, such high-
performance processors are typically optimized for
average-case performance rather than predictable
worst-case performance required by real-time
systems. In other words, they have overlooked the
processor-induced unpredictability in their analysis
which, consequently, can lead to unreliable results.
This paper sheds light on the impact of processor-
induced delays on control performance and focuses
on schedulability analysis of real-time control tasks
in presence of low-leakage cache hierarchy. In other
words, it investigates the impact of processing
delays induced by leakage-saving mechanisms on
the schedulability of control tasks and, therefore, on
the performance and stability of the controlled
processes.

3. Methodology
The experimental procedure that has been followed
to perform this research consists of three main steps:
a) estimation of leakage-power savings using
different leakage-saving techniques at different
cache levels, b) time-predictability analysis and
WCET estimation under different leakage-saving
techniques, c) modelling of standalone and
networked real-time embedded control systems and
analysis of their timing behaviour and control
performance in presence of leakage-saving
techniques. The next sub-sections thoroughly
explain each step.

3.1 Power Tradeoffs Analysis
This step aims at comparing Gated-Vss technique
and Drowsy cache in terms of their potential power
savings in a superscalar processor whose
configuration is shown in table 1. All results were
obtained using Hotleakage [44]. Hotleakage is a
full-system simulator with an architectural model
for sub-threshold and gate-leakage in caches and
cache-like structures. This paper assumes a
processor model that closely resembles an alpha
21264 [45]. In addition, leakage-saving mechanism

is applied on exactly one cache level at a time.
Power estimation was based on six randomly chosen
benchmarks from SPEC2000 benchmark suite [46].

Table 1: Baseline Processor Configuration

Parameter Value
Processor

Functional Units

LSQ Size
RRU Size

Fetch Width
Decode Width

Issue Width
Commit Width

Fetch Queue Size
Clock Frequency

4 Integer ALU
1 Integer

multiplier/divider
4 FP ALU

1 FP multiplier/divider
8
8

4 instruction / cycle
4 instruction / cycle
4 instruction / cycle
4 instruction / cycle

4 instruction
2800 MHz

Cache and Memory Hierarchy
L1 Instruction Cache

L1 Data Cache

Last Level(L2)

Main Memory

Size: 32KB, 64 byte
blocks

Associativity: 2-way
1 cycle latency

Size: 64KB , 64 byte
blocks

Associativity: 2-way
1 cycle latency

Write policy: write back

Size: 256 KB unified ,
128 byte blocks
Associaitivity: 8
6 cycle latency

Write policy: write back
100 cycle latency

Brach Predictor
Predictor

BTB
Misprediction Penalty

Combined , bimodal
2KB table

Two-level 1KB table
8-bit history

512 entry, 4-way
3 Cycles

Table 2 shows the used benchmarks along with a
short description for each one. The two leakage-
saving mechanisms have been implemented such
that a particular cache line is put into low-leakage
mode if it spends a sufficiently long time interval
without being accessed. We refer to this interval to
as Low-Power Interval (LPI).

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 86 Volume 12, 2015

Admittedly, both leakage-control mechanisms
require extra hardware that adds more dynamic and
leakage power to that consumed by the original
processor hardware. Their power cost include:
dynamic power due to extra hardware, leakage
power resulting from extra hardware, dynamic
power due to mode transitions and dynamic power
Due to loss of state [44, 45]. Hence, this paper has
measured the effectiveness of each leakage-saving
technique taking into account both benefits and
costs of each technique. For each technique, all
benchmarks have been run, till completion, on the
baseline configuration assuming different LPI
values. The efficacy of each technique at each
possible LPI has then been quantified in terms of its
average power savings among all benchmarks.

Table 2: Benchmarks Description.
Benchmark Category

ammp Computational Chemistry
apsi Meteorology: Pollutant Distribution

equake Seismic Wave Propagation Simulation
bzip2 Compression
galgel Computational Fluid Dynamics
mesa 3-D Graphics Library

3.2 Statistical WCET Estimation Using EVT
This part compares Gated-Vss and Drowsy cache in
terms of time predictability; it estimates the WCET
of real-time tasks in presence of these techniques
and figures out which technique would provide a
close predictability as compared to a baseline
system with no leakage-control. WCET estimation
using EVT consists of two main steps as shown in
the following sub-sections.

3.2.1 Generation of Execution Time Population
(ETP).
An important step in any statistical approach is to
generate data samples from which statistical models
can be obtained and evaluated. In this work, data
samples represent execution time values obtained
from end-to-end measurements on the target
processor. In general, the total population of
execution time values in a real-time system is
extremely large and difficult to determine.
Therefore, it is important to limit the population of
interest into a representative dimension that can be
treated in a tractable manner. This fact requires
understanding the factors with strong influence on
the execution time of a particular task and
quantifying the extent to which a particular factor
can affect the execution time of any run of the task

under study. These factors are usually known as
Source of Execution Time Variability (SETV)
[47].Typically, the execution time of a program
depend on its working set and the extent to which
this working set can interact with the underlying
processor micro-architecture. In this paper, a Placket
and Burman (PB) design [48] has been used to
obtain execution time samples that take into account
the impact of each micro-architectural parameter on
the execution time of a task. PB design has been
employed since it requires only about N simulations
to produce the desired level of information that
takes into account the impact of N different
parameters. However, the major critique against PB
design is that it is unable to quantify the effects of
all possible interactions between different
parameters. Hence, it is possible that a significant
but unobserved interaction may change the apparent
impact of a particular parameter. However, this
situation probably does not occur for processor
designers; it has been shown in [49] that the
interaction between parameters is significant only
when the impact of each parameter is by itself
significant. End-to-end measurements of execution
times were obtained using Hotleakage [44]. For
each simulation run, a particular configuration is
obtained from the PB design matrix. The rows of the
design matrix represent different processor
configurations while the columns represent the
values of different parameters in each configuration.
For instance, table 3 illustrates a PB design matrix
that is useful to study the impact of 8 or less
parameters on the execution time of a program.

Table 3: PB Design Matrix for 8 Parameters.
A B C D E F G H Time
-1 -1 -1 -1 -1 -1 -1 -1 7
1 -1 +1 +1 -1 +1 -1 -1 11
-1 -1 -1 +1 +1 +1 -1 +1 18
-1 -1 +1 +1 +1 -1 +1 +1 22
+1 +1 +1 -1 +1 +1 -1 +1 9
+1 -1 -1 -1 +1 +1 +1 -1 10
-1 +1 -1 -1 -1 +1 +1 +1 33

In the PB design matrix, a “+1” or high value
indicates a parameter value that is higher than the
normal range of values whereas a “-1” or low value
indicates a parameter value that is lower than the
normal range of that parameter values. The values
of a particular parameter are not restricted to
numerical values only. For instance, in case of cache
replacement policy, a random replacement policy
may indicate a low value while a Least Recently
Used policy may indicate a high value. In this work,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 87 Volume 12, 2015

execution samples were generated based on PB
design matrix that captures the interactions between
program’s working set and 39 different micro-
architectural parameters. The selected parameters
and their PB values are shown in Table 4. As
mentioned earlier, this work assumes a superscalar
processor with a 2-level cache hierarchy. The first
level (L-1) consists of separate instruction cache (I-
Cache) and a separate data cache (D-Cache) while
the second level contains and a unified cache (U-
Cache). The PB design matrix takes into account the
size, block size, associativity, replacement policy
and the latency of each cache level. The cache
hierarchy also employs an instruction translation
lookaside buffer (I-TLB) and a data lookaside buffer
(D-TLB). The size, page size, latency and
associativity of each TLB have also been considered
in the PB matrix. Other parameters of the memory
hierarchy include main memory latency (Latency-
First, Latency-Second) and its bandwidth. The PB
matrix includes the parameters of the processor and
its functional units as well. Processor parameters
include Instruction Fetch Queue (IFQ), Return
Address Stack (RAS), Branch Prediction Type,
Branch Misprediction Penalty, Branch Target Buffer
(BTB), Reorder Buffer (ROB), Load/Store Queue
(LSQ) and Number of Memory Ports. On the other
hand, functional unit’s parameters include: number
of integer arithmetic and logic units (ALU), number
of integer Multiplier/Divider units, number of
floating point (FP) ALUs and the number of FP
Multiplier/Divide units. Based on the parameters
shown in table 4, a PB matrix with 48 simulation
runs has been created. The PB matrix has been
created using minitab statistical software [50]. This
number of simulation runs provides a reasonable
threshold to identify the interactions among the
parameters of interest. In order to create the ETP,
based on which the statistical analysis will be
carried out, an application should be tested with
different input patterns or data sets that are
guaranteed to excite all possible control-flow paths
within the CFG of the application. However, it is
intractable to test the application with all possible
input patterns. Consequently, it is important to test
the application with a reduced yet a representative
set of input patterns. In this work, simple random
sampling (SRS) has been used to select a set of
input patters from the population of possible inputs.
In SRS, each possible input has the same chance of
being selected [20].

Table 4: PB Matrix Parameters and their Values.

Parameter Low
Value

High
Value

Processor
IFQ Size 4 32

Branch Predictor Not Taken Perfect
Branch Misprediction

Penalty
10 2

Number of RAS Entries 4 64
Number of BTB Entries 16 512
Associatively of BTB Fully 2
Speculative Branch

Update
Decode Write

Back
LSQ Size 2 64

Number of Memory Ports 1 4
Functional Units

Number of Integer ALUs 1 4
Number of (FP) ALUs 1 4

Number of Integer
Multiplier/Divisor Units

1 4

Number of FP
Multiplier/Divisor Units

1 4

Memory Hierarchy
L-1 I-Cache Size 4 KB 128 KB

L-1 I-Cache Assoc. 1 8
L-1 I-Cache Block Size 16 64

L-1 I-Cache Replacement
Policy

Random LRU

L-1 I-Cache Latency 4 1
L-1 D-Cache Size 4 KB 128 KB

L-1 D-Cache Assoc. 1 8
L-1 D-Cache Block Size 16 64

L-1 D-Cache
Replacement Policy

Random LRU

L-1 D-Cache Latency 4 1
L-2 U-Cache Size 256 KB 8192 KB

L-2 U-Cache Assoc. 1 8
L-2 U-Cache Block Size 64 128

L-2 U-Cache
Replacement Policy

Random LRU

L-2 U-Cache Latency 20 5
Memory Latency, First 200 50

Memory Latency, Second 4 1
Memory Bandwidth 8 32

I-TLB Size 32 256
I-TLB Page Size 4 K 4096 K

I-TLB Associativity 2 fully
D-TLB Size 32 256

D-TLB Page Size 4 K 4096 K
D-TLB Associativity 2 fully

I-TLB, D-TLB Latency 80 30

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 88 Volume 12, 2015

Its usage assures that regardless of the size of input
population, statistical analysis based on the
sampling distribution generated by SRS can
reasonably estimate the parameters of the
underlying population. Having selected the input
patterns, each selected input has been simulated
under all possible configurations provided by the PB
matrix and its execution time has been observed.
The set of all execution times obtained by testing
each selected input on all possible PB
configurations yields the population of execution
times based on which statistical inference can be
made. For each cache level, three execution time
populations have been created; one for the base case
where no leakage-control is applied and the other
two represent the cases where either Gated-Vss or
Drowsy cache is applied.

3.2.2 Statistical Estimation of WCET
In this part, EVT techniques are applied on
execution time populations in order to obtain a
statistical WCET estimate. The block maxima (BM)
technique [33] is used to fit execution time
measurements to the GEV distribution. The
probability density function (PDF) of the GEV
distribution is given by [33]:

)(1)(1),,|(xyexyxf −+= ξ

σ
ξσµ (1)

Such that: ()
1 , 0

, 0()/

x

e

y
x

x
µξ ξ

σ

ξµ σ

 − + ≠

=− −

=

Where: µ, σ and ξ are location, scale and shape
parameters of the distribution, respectively. The
basic operation of the BM method is illustrated in
the flow chart shown in fig. 1. The ultimate goal of
this process is to estimate distribution parameters
that yields distribution’s PDF that represents the
sampled data and captures the tail behaviour of the
underlying ETP. The suitability of the selected PDF
to the sampled ETP can be tested via an appropriate
GOF test. This work uses Chi-square test [51] to
check whether the estimated parameters of the GEV
distribution can truly fit the measured execution
time values. Once the estimated PDF passes the
GOF test, it will represent the probabilistic model
upon which WCET estimation can be made. Our
proposed WCET estimation algorithm, based on
BM method, is depicted in fig. 2. This approach has
been implemented using MATLAB [52]. The
proposed algorithm takes as input an ETP which

consists of a number of execution time samples and
produces a WCET estimate with a predefined
confidence level.

Fig. 1: Block maxima (BM) flow chart.

Fig. 2: WCET Estimation Algorithm.

The ETP is first divided into an equal-size number
of blocks (nB) and the maximum value in each
block will be observed. However, the number of
blocks is not arbitrarily chosen but rather should be
selected based on two important conditions. First,
the number of blocks should be greater than 20 in

Start

Divide ETP into Blocks

Select the Maximum
Value of Each Block

Fit Block Maxima to
GEV Distribution

End

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 89 Volume 12, 2015

order to provide a sufficient number of samples for
statistical analysis [51]. Second, the value of nB
should be chosen such that the GEV distribution
parameters estimated based on that value pass the
GOF test performed in line 14. Hence, our algorithm
checks multiple values of nB until the
aforementioned conditions are satisfied. This can be
seen in lines 5 through 16 in fig. 2. Fig. 3 illustrates
the pseudocode of the GOF test. This test takes as
input block maxima that have been observed based
on a particular value of nB and returns a Boolean
value that indicates whether the observed block
maxima complies with the GEV distribution. As
shown in Fig. 2, the GOF procedure is called
iteratively until a distribution fit is achieved. The
GOF test procedure receives as input a vector of
block maxima and uses the Maximum Likelihood
Estimate (MLE) method to estimate relevant GEV
distribution parameters.

Fig. 3: Pseudocode of GOF Test.

The estimated parameters and the vector of maxima
are then passed to the Chi-Square test procedure in
order to determine the suitability of the estimated
GEV parameters to the sampled block maxima. The
MLE method is an extremely important approach to
estimation in statistical inference. A formal
definition of MLE can be stated as follows [53]:

Definition 1: Given independent observations
x1,x2,x3 xn from a probability density function
(PDF) f(x; θ) where x and θ represent variables and
distribution parameters respectively, the maximum
likelihood estimator is that which maximizes the
likelihood function

1 2
1

(, ,...., ;) (,)
n

n i
i

L x x x f xθ θ
=

=∏ (2)

Such that θ = (σ, µ, ξ). In general, likelihoods are
conditional probability densities that can be used in
either of two cases: First, when θ is fixed, the PDF
f(x; θ) is used to compute the density at x, f(x| θ).
Second, when x is fixed, the PDF is used to find the
likelihood of the parameters θ, f(θ|x). Quiet often, it

is more convenient to work with the natural
logarithm of the likelihood function in finding the
maximum of that function. Hence, If the set of
execution times {xi} contained in the vector of
block maxima are independent and identically
distributed from a GEV distribution, then the log-
likelihood function for a sample of n block maxima
{x1,x2,...,xn} is

1

ln[(|)] ln()

1 ln() ()
1

n
i i

i

L x n

y y ξ

θ σ

ξ=

= − +

− −

∑ (3)

Such that: 1 ()()iy xξ µ
σ

 = − −
.

Once the GEV parameters are obtained from the
MLE method, Chi-square test is performed to assess
whether the observed block maxima have truly
come from a GEV distribution whose parameters
have been returned by the MLE method. Chi-square
test is a mathematical formalization of the intuitive
idea of comparing the histogram of block maxima to
the shape of the candidate GEV distribution. In this
work, the Chi-square test has been implemented
according to the pseudo code shown in fig. 4. This
implementation has been derived from [52]. As
shown in fig. 4, the test divides the vector of block
maxima into K class intervals based on the rules
given in table 5 [52]. It then computes the test
statistic as:

2

2
0

1

()k
i i

ii

O E
E

χ
=

−
=∑ (4)

Such that: Oi and Ei are the observed and expected
frequencies in the ith class interval, respectively. The
expected frequency Ei in a particular class interval
is computed as npi where n is the number of
elements in the maxima vector and pi is the
theoretical probability associated with the ith class
interval. The value of pi is computed based on the
parameters estimated by the MLE method.
According to [52], the test statistic given by eq. (4)
follows the chi-square distribution with (K-s-1)
degrees of freedom (df), where s is the number of
parameters of the candidate distribution estimated
by the MLE method. The GEV distribution has an s
value of 3. Having computed the test statistic, it
should then be compared against the critical value
of that statistic at df degrees of freedom and a
particular level of significance [52].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 90 Volume 12, 2015

Fig. 4: Chi-Square Test Pseudocode.

 In this work, significance levels of 0.05 and 0.01
have been considered. As can be seen in fig. 4, the
chi-square test will return true if the computed
statistic is less than the critical value of that statistic
at the given degrees of freedom and either of the
considered levels of significance - with the 0.05
level being checked first. Otherwise, it will return
false. A true value indicates that the block maxima
conform to the GEV distribution with the
parameters estimated by the MLE method.
Consequently, the fitted GEV distribution can then
be used to make WCET estimations.

Table 5: Class Interval Rules

Sample Size (n) Number of Class Intervals
< 20 Do not use chi-square test
50 5 to 10

100 10 to 20
 >100 n or n/5

In this work, WCET estimation is based on the type
of systems in which real-time task is implemented.
Real-time systems can be classified as either soft or
hard systems [1]. Soft real-time systems are those
systems in which task deadlines can occasionally be
missed while hard real-time systems are those

systems in which deadlines are never allowed to be
missed. For soft RTS, the WCET is quantified in
terms of the return level (Rm) which is defined as
the block maxima value that is expected to be
exceeded only once in exactly m blocks. On the
other hand, the WCET of hard RTS is quantified in
terms of the WCET at risk (WCETaR) which is
defined as the block maxima value with an
extremely low probability of being exceeded. Fig. 5
depicts our proposed WCET estimation procedure.
It gives the implementation of the procedure
invoked in line 18 of the main algorithm given in
fig. 2. As shown in fig. 5, WCET estimates are
based on the GEV cumulative distribution function
(CDF) which can be easily obtained by integrating
the GEV PDF. Once the CDF is obtained, its inverse
can be used to make WCET estimates for either soft
or hard real-time systems.

Fig. 5: WCET Calculation Procedure.

3.3 Modelling of Real-Time Embedded
Control Systems (RTECS).

This part studies the impact of processing delays
caused by leakage-saving mechanisms on the
schedulability of control tasks and, therefore, on the
performance and stability of the controlled
processes. RTECS models have been created using
TrueTime [54]. TrueTime is a Matlab/Simulink-
based package that can be used to simulate the
temporal behavior of RTECS systems in which
control algorithms are implemented as real-time
tasks managed by a multitasking real-time kernel.
The real-time kernel emulates the fundamental
operation of a real-time operating system (RTOS).
In this work, three types of RTECS models have
been studied: A) a standalone RTECS in which a
single physical plant is controlled by a CPU with
RTOS, B) a standalone RTECS where multiple
physical plants are controlled by a single CPU with
multitasking RTOS. C) A networked RTECS in

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 91 Volume 12, 2015

which control system’s components i.e. sensors,
actuators and the controller process are
communicating via a computer network. As
mentioned before, control algorithms, in all
scenarios, are implemented as real-time tasks. These
tasks can be used to simulated both periodic and
aperiodic activities. Associated with each task are a
set of parameters that include task name, a release
time which defines the time instant at which the task
becomes ready to execute, a worst-case execution
time (WCET) which is the maximum time budget
allocated for a task, relative and absolute deadlines
that define the time instant by which the task should
finish its execution and a period which defines the
exact difference between the releases of two
consecutive instants of a particular task. Whereas
some attributes like period and priority are kept
constant, other attributes such as release time and
absolute deadline are constantly updated by the real-
time kernel. Most importantly, the WCET of each
task can be set as a constant, a data-dependent value
or a random variable. In this work, the WCET of
each control task is modeled as a random variable
generated from a particular GEV distribution. The
selection of a particular GEV distribution depends
on the used low-leakage technique and the cache
level on which that technique is applied.

4. Results and Analysis
This section presents and analyzes the results that
have been obtained by applying the experimental
procedure outlined in the previous section.

4.1 Power Estimation Results
This section gives a comparative analysis between
Gated-Vss and Drowsy cache in terms of their net
power savings (NPS). Both techniques have been
applied on L-1 I-Cache, L-1 D-Cache and L-2
unified cache. The aforementioned cache levels
have been tested in a mutually exclusive manner i.e.
only one cache level is put in low-leakage mode at a
time while other levels are assumed to be in normal
mode where no leakage-saving mechanism is
applied. Fig. 6 compares the net power savings
achieved by Gated-Vss and Drowsy cache
techniques when applied on the L-1 D-Cache. Each
bar represents the average net savings among the
used benchmarks. The observations that can be
made from this figure are twofold; first: the average
net power savings, in both cases, is directly
proportional to the LPI value; small values of LPI
will prematurely put the cache line into low-leakage
mode leading to a situation in which leakage-power

savings are offset by the dynamic power caused by
extra penalty cycles required to retain the cache line
in the normal access mode. Second, Gated-Vss
achieves higher average net power savings, as
compared to Drowsy cache, at all values of LPI
since it completely turns the cache line off which in
turn leads to a zero leakage power consumption.

8192 16384 32768 65536
0

20

40

60

80

100

LPI (CPU Cycles)

N
PS

 (%
)

Drowsy
Gated-Vss

Fig. 6: L-1 D-Cache Power Savings.

On the other hand, fig. 7 depicts the average net
power savings achieved by the two techniques when
applied on L-1 I-Cache. Fig. 7 confirms the first
observation that has been noticed in fig. 6.
However, it shows a totally different behavior where
Drowsy cache technique outperforms Gated-Vss at
all possible LPI values; L-1 I-Cache has a much
higher access rate as compared to the L-1 D-Cache.
The access rate is defined as the number of cache
accesses per cycle. Whereas the I-Cache is accessed
at least once every clock cycle, the D-Cache will be
accessed in only a particular portion of cycles
which depends on the frequency of memory access
instructions.

8192 16384 32768 65536
0

20

40

60

80

100

LPI (CPU Cycles)

N
PS

 (%
)

Drowsy
Gated-Vss

Fig. 7: L-1 I-Cache Power Savings.

Consequently, applying the Gated-Vss technique on
the L-1 I-Cache has led to frequent accesses to the
lower levels of the memory hierarchy. Such
accesses require high dynamic power consumption
which can ultimately outweigh the leakage savings
achieved by the Gated-Vss technique. Moreover, the
Drowsy cache technique does not incur any extra
accesses to the lower levels of the memory
hierarchy and, therefore, has achieved much better
power savings when applied on the L-1 I-Cache.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 92 Volume 12, 2015

 Nevertheless, the average net power savings
obtained by applying either of the techniques on L-1
I-Cache is smaller than that of the L-1 D-Cache.
Finally, fig. 8 summarizes the average net power
savings obtained by applying the two techniques on
the unified L-2 cache. Fig. 8 also reveals the fact
that power savings increase as the ILP value
increases. In addition, the two techniques achieve
almost equal net power savings. This observation
can be explained as follows: Gated-Vss technique
saves more leakage power but leads to high dynamic
power consumption since a cache miss induced by
putting a L-2 cache line into power-off mode
requires an a access to the off-chip resources which
consume extremely more power as compared to on-
chip resources. On the other hand, Drowsy cache
technique saves less leakage power but does not
cause any extra accesses to the off-chip resources
and, consequently, consume less dynamic power as
compared to the Gated-Vss technique. Therefore,
the two techniques appear to be identical in their
potential power savings.

8192 16384 32768 65536
0

20

40

60

80

100

LPI (CPU Cycles)

N
PS

 (%
)

Drowsy
Gated-Vss

Fig. 8: L-2 Cache Power Savings.

4.2 Statistical WCET Estimation
This section shows and compares WCET estimates
under Gated-Vss and Drowsy cache techniques at
different cache levels. This analysis was performed
based on the insertsort benchmark [55]. This
benchmark has been tested with an integer array of
one million elements. Several input patterns have
created and one hundred of them have been chosen
using the SRS method for ETP generation. Each
input will be run on the 48 configurations provided
by the PB matrix. Hence, each ETP consists of 4800
execution time value. There are three ETPs to test
each particular cache level i.e. L-1 I-Cache, L-1 D-
Cache and L-2 U-Cache. Table 6 gives the GEV
maximum likelihood parameter estimates obtained
by applying the algorithm given in fig. 2 on the
ETPs generated for L-1 D-Cache analysis.

Table 6: GEV Parameters for L-1 D-Cache.

Mode Parameter
ξ σ µ

Base 0.0533 0.6363 1.5149
Gated-Vss 0.1442 2.5114 4.880

Drowsy 0.0654 0.6489 1.6722

The base mode indicates the case when no leakage-
saving mechanism is applied on any of the cache
levels. These parameters can then be used to
construct the GEV PDF and CDF upon which
WCET estimates can be made. The quality of the
ETP to GEV fit can be assessed visually by
investigating the fitted PDF and CDF and
comparing them against the histogram and the
empirical CDF of the respective ETP, respectively.
This step is summarized in fig. 9 and fig. 10. It can
be observed that the empirical and estimated counter
parts go in harmony with each other. The results
shown in fig. 9 and fig. 10 in conjunction with the
parameters given in table 6 indicate that the
temporal behavior of the processor when the L-1 D-
Cache is operated in the Drowsy mode is almost
identical to that of the base mode where no leakage-
saving mechanism is applied. Furthermore, the
Gated-Vss mode has a higher parameter values and
different tail behavior as compared to the other two
modes. On the other hand, table 7 lists the GEV’s
maximum likelihood parameters estimated by
applying the GEV fitting algorithm on the ETPs
generated for the L-1 I-Cache. Based on table 7, it
can be observed that the Drowsy mode has a close
parameter estimates to that of the base mode while
the Gated-Vss mode has higher parameter values as
compared to the two other modes.

Table 7: GEV Parameters for L-1 I-Cache.

Mode Parameter
ξ σ µ

Base 0.0533 0.6363 1.5149
Gated-Vss 0.8275 5.7159 6.6971

Drowsy 0.1182 0.7859 1.8875

Moreover, the GEV distribution under both leakage-
saving techniques has higher parameter estimates
when compared to the case of L-1 D-Cache.
Consequently, applying the same leakage-saving
technique on different cache levels could potentially
lead to different tail behavior of the GEV
distribution which in turn can lead to different
WCET estimates. This fact can be proved

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 93 Volume 12, 2015

graphically by comparing the empirical and fitted
PDF and CDF functions.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (ns)

PD
F

ETP
GEV

(a) L-1 D-Cache Base PDF

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

Time (ns)

PD
F

ETP
GEV

(b) L-1 D-Cache Gated-Vss PDF

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (ns)

PD
F

ETP
GEV

(c) L-1 D-Cache Drowsy Cache PDF

Fig. 9: L-1 D-Cache PDF.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

ETP
GEV

(a) L-1 D-Cache Base CDF

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

ETP
GEV

(b) L-1 D-Cache Gated-Vss CDF

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

ETP
GEV

(c) L-1 D-Cache Drowsy Cache CDF

Fig. 10: L-1 D-Cache CDF.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 94 Volume 12, 2015

Fig. 11 shows the histogram of the generated ETP,
for L-1 I-Cache, overlaid with the PDF of the fitted
GEV distribution. Similarly, Fig. 12 shows the
empirical and fitted CDF functions. Based on fig.
9-12, it is apparent that the fitted and empirical

distributions are consistent with each other.
Moreover, both fitted and empirical distributions
under Drowsy mode are almost identical to those
estimated under the base mode.

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (ns)

PD
F

ETP
GEV

(a) L-1 I-Cache Gated-Vss PDF

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

ETP
GEV

(a) L-1 I-Cache Gated-Vss CDF

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (ns)

PD
F

ETP
GEV

(b) L-1 I-Cache Drowsy PDF.

Fig. 11: L-1 I-Cache PDF.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

GEV
ETP

(b) L-1 I-Cache Drowsy CDF.

Fig. 12: L-1 I-Cache CDF.

Hence, the temporal behavior of the processor under
Drowsy mode is very close to that under base mode.
Consequently, the processor can still provide the
same level of time-predictability while at the same
time consuming less power as compared to the base
mode. On the other hand, for both L-1 I-Cache and
L-1 D-Cache, the fitted GEV distributions under
Gated-Vss mode are different from that of the base
mode which, consequently, suggests a different
temporal behavior from that observed under base
and Drowsy modes. Hence, applying the Gated-Vss
technique could potentially lead to different degree
of time-predictability as compared to the base mode

Albeit providing significant leakage-savings
especially when applied on L-1 D-Cache.
Furthermore, table 8 shows the maximum likelihood
parameter estimates for the GEV distributions
obtained by applying the GEV fitting algorithm on
the ETPs of the L-2 U-Cache.

Table 8: GEV Parameters for L-2 U-Cache.

Mode Parameter
ξ σ µ

Base 0.0533 0.6363 1.5149
Gated-Vss 0.3767 6.3096 8.2498

Drowsy 0.0618 0.7732 1.8407

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 95 Volume 12, 2015

Based on table 8, it is apparent that Gated-Vss mode
has higher parameter estimates as compared to the
other two modes.In addition, the GEV parameters
for the Drowsy mode are very close to those of the
base mode. Comparing these parameters with
previous estimates, it can be noted that applying the
Drowsy mode on L-1 D-Cache or L-2 U-Cache

Would result in a temporal behavior that is to
somehow identical to that of the base mode where
no leakage-saving mechanism is applied. Moreover,
the Gated-Vss technique yields a higher parameter
estimates and, in turn, different temporal behavior
as compared to the other modes.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (ns)

PD
F

ETP
GEV

(a) L-2 U-Cache Gated-Vss PDF

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

ETP
GEV

(a) L-2 U-Cache Gated-Vss CDF

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (ns)

PD
F

ETP
GEV

(b) L-2 U-Cache Drowsy Cache PDF

Fig. 13: L-2 U-Cache PDF.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

C
D

F

ETP
GEV

(b) L-2 U-Cache Drowsy Cache CDF.

Fig. 14: L-2 U-Cache CDF.

Similar to the previous cases, the quality of L-2 U-
Cache ETP to GEV fit can be assessed graphically
as shown in fig. 13 and fig. 14. As shown in the
aforementioned figures, the histogram and the
empirical CDF of the generated ETP are consistent
with the fitted PDF and CDF of the GEV
distribution. Furthermore, the PDF and CDF of the
GEV generated under Drowsy cache mode are
always very close to those of the base mode. On the
other hand, the Gated-Vss mode has always
different shape and longer tail behaviour in its PDF
and CDF as compared to other modes of operation.
The impact of such shape and tail behaviour

differences will be further analyzed in the next
paragraphs. Once the fitted GEV distributions for
different low-leakage mechanisms at various cache
levels have been obtained, they can be used to make
WCET estimates for both soft and hard RTSs.Fig.
15 shows the WCETaR estimates for a processor in
which the L-1 D-Cache is put into low-leakage
mode. The WCETaR estimates are made at different
exceedance probabilities (Pe). It can be observed
that the Gated-Vss technique leads to higher
WCETaR estimates as compared to the other modes
while the Drowsy mode yields estimates that are
very close to the base mode. In order to quantify the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 96 Volume 12, 2015

impact of such discrepancy, in WCET estimates, on
the suitability of leakage-saving mechanisms for
RTSs, we propose the Degree of Predictability
(DoP) measure. The DoP is defined as follows:

*100%B
LK

WCERaRDoP
WCETaR

= (5)

Where WCETaRB and WCETaRLK are the WCETaR
estimates in the base and low-leakage modes,
respectively.

0

50

100

150

200

250

300

350

P
e

W
CE

Ta
R

(n
s)

10-3 10-5 10-7 10-9

Base
Gated-Vss
Drowsy

Fig. 15: L-1 D-Cache WCETaR.

Fig. 16 depicts and compares the DoP values under
Gated-Vss and Drowsy cache modes. The DoP
values under the Drowsy mode are much higher
than those of the Gated-Vss mode; the WCETaR
values under the Drowsy mode are very close to the
estimates made under the base mode.

0

10

20

30

40

50

60

70

80

90

100

P
e

D
oP

 (%
)

10-3 10-5 10-7 10-9

Gated-Vss
Drowsy

Fig. 16: DoP Comparison for L-1 D-Cache.

On the other hand, fig. 17 shows the WCETaR
estimates assuming that the L-1 I-Cache is put into
low-leakage mode while other levels are left intact.
Fig. 17 confirms the fact that Gated-Vss always
leads to higher WCET estimates as compared to
other modes. Moreover, it can be noticed that
WCET estimates under low-leakage L-1 I-Cache are
higher than those made under low-leakage L-1 D-
Cache. In addition, Fig. 18 compares the DoP values

assuming a low-leakage L-1 I-Cache. The
observations that can be made based on fig. 18 are
twofold; first, using Gated-Vss technique introduces
higher degree of unpredictability in the temporal
behaviour of the processor as compared to the
Drowsy cache mode. Second, the DoP under low-
leakage L-1 I-Cache is always lower than the DoP
under low-leakage L-1 D-Cache. Hence, from time-
predictability perspective, it is preferred to apply
leakage-saving mechanisms on L-1 D-Cache rather
than applying it on L-1 I-Cache.

0

100

200

300

400

500

600

700

800

900

1000

P
e

W
C

ET
aR

 (n
s)

10-3 10-5 10-7 10-9

Base
Gated-Vss
Drowsy

Fig. 17: WCETaR Estimates for L-1 I-Cache.

0

10

20

30

40

50

60

70

80

90

100

P
e

D
oP

 (%
)

10-3 10-5 10-7 10-9

Gated-Vss
Drowsy

Fig. 18: DoP Comparison for L-1 I-Cache.

Furthermore, Fig. 19 gives the WCETaR values
assuming a low-leakage L-2 U-Cache. Fig. 19 also
confirms that Drowsy cache mode provides a close
estimates to those made under base mode whereas
Gated-Vss technique results in a wide predictability
gap as compared to the base mode. Moreover,
WCET estimates obtained under low-leakage L-2
U-Cache are higher than that of the L-1 D-Cache
but lower than that of the L-1 I-Cache. The
suitability of using low-leakage L-2 U-Cache in
hard real-time systems can be evaluated by means of
the DoP metric. Fig. 20 summarizes the DoP values

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 97 Volume 12, 2015

under possible L-2 U-Cache leakage-saving modes.
By analyzing the results provided in fig. 20, it is
clear that Drowsy L-2 U-Cache provides much
better DoP as compared to the Gated-Vss one.
However, the achieved level of predictability is less
than that obtained by applying the same low-leakage
mechanism on the L-1 D-Cache.

0

100

200

300

400

500

600

P
e

W
C

ET
aR

 (n
s)

10-3 10-5 10-7 10-9

Base
Gated-Vss
Drowsy

Fig. 19: WCETaR Estimates for L-2 U-Cache.

0

10

20

30

40

50

60

70

80

90

100

P
e

D
oP

 (%
)

10-3 10-5 10-7 10-9

Gated-Vss
Drowsy

Fig. 20: DoP Comparison for L-2 U-Cache.

Thus, it can be concluded that applying the Drowsy
cache technique on L-1 D-Cache provides high level
of predictability and, consequently, represents a
viable design consideration in low-leakage hard
real-time systems. While the previous analysis
serves as a solid guideline for hard RTS designs, it
may not be as helpful for soft RTS analysis. Hence,
the impact of each leakage-saving mechanism on
the time predictability of such systems has been
quantified in terms of another metric which is the
return level (Rm). Table 9 shows the return level
values for different values of m. It gives all possible
combinations of leakage-saving mechanism and
cache levels. Several observations can be made

based on table 9: First, applying the Gated-Vss
technique on any cache level results in higher Rm
values as compared to the other modes. Second,
applying the Drowsy mode one different cache
levels causes varying degrees of proximity to the
base mode; a Drowsy L-1 D-Cache or L-2 U-Cache
produce Rm values that are closer to the base mode
as compared to that of the L-1 I-Cache.

Table 9: Return Level Values.

Mode L-1 D-Cache
R100 R400 R800 R1000

Base 4.83 6.00 6.62 6.83
Gated-Vss 21.28 28.79 33.14 34.63

Drowsy 5.15 6.43 7.11 7.34

Mode L-1 I-Cache
R100 R400 R800 R1000

Base 4.83 6.00 6.62 6.83
Gated-Vss 310.66 981.92 1743.60 2097.5

Drowsy 6.69 8.73 9.89 10.28

Mode L-2 U-Cache
R100 R400 R800 R1000

Base 4.83 6.00 6.62 6.83
Gated-Vss 86.26 151.48 199.26 217.50

Drowsy 5.95 7.45 8.24 8.50

Third, applying the Drowsy mode on any cache
level tends to be more beneficial , from temporal
perspective, than applying the Gated-Vss technique.
In order to quantify the suitability of every
combination of cache level and leakage-saving
mechanism for use in soft RTS, we propose the soft
unpredictability factor (SUF) as follows:

m LK
m b

R
SUF

R
−

−
= (6)

Where: Rm-LK and Rm-b are the return level values
under the low-leakage and base modes respectively.
Eq. (6) computes the factor by which Rm-LK is higher
than Rm-b. Table 10 shows the values of SUF under
all possible combinations of cache level, leakage-
saving mechanism and return level. The level of
predictability provided at each possible value of Rm
is inversely proportional to the SUF at this value.
However, depending on the value of SUF only may
not clearly state the impact of each leakage-saving
technique on the predictability of soft RTS. Hence,
another comprehensive metric has been proposed
and computed through an iterative process. This
metric is referred to as Loss of Schedulability (LoS).
Every iteration of this process consists of the
following steps:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 98 Volume 12, 2015

Table 10: SUF Values.

Mode L-1 D-Cache
R100 R400 R800 R1000

Gated-Vss 4.41 4.80 5.01 5.07
Drowsy 1.07 1.07 1.07 1.07

Mode L-1 I-Cache
R100 R400 R800 R1000

Gated-Vss 64.32 163.65 263.38 307.10
Drowsy 1.39 1.46 1.49 1.51

Mode L-2 U-Cache
R100 R400 R800 R1000

Gated-Vss 17.86 25.25 30.10 31.84
Drowsy 1.23 1.24 1.24 1.24

A. Generate a total of 1000 random task sets.

Each set contains four periodic tasks.
B. Loop through all task sets generated in step

A and identify the task sets that are
schedulable according to a fixed priority
scheduling algorithm and add them to the
set Tsched. The number of tasks in this set is
denoted as NUMsched . Note: a task set is
schedulable according to a particular
scheduling algorithm if every task in this set
finishes before its deadline.

C. For each task set in Tsched, multiply the
execution time of every task by the
corresponding SUF value.

D. After updating the execution time of all
tasks, iterate through all tasks sets and
identify the tasks sets that became non-
schedulable according to the scheduling
algorithm used in step B. the number of
non-schedulable tasks sets is denoted as
NUMnon-sched .

E. Calculate LoS as (NUMnon-sched / NUMsched)
* 100%.

In this work, the iterative process has been
performed assuming 1000 iterations. The rate-
monotonic (RM) scheduling algorithm has been
used and its schedulability test has been performed
using the Time-Demand Analysis (TDA) method
[1]. Details on the RM algorithm and the TDA
method can be found in [1]. Table 11 shows the LoS
value under all possible leakage-saving techniques
and cache levels. The reported LoS value is the
average among all iterations of the iterative process.
According to table 11, almost all tasks will miss
their deadlines in two cases: 1) when the Gated-Vss
technique is employed on any cache level, 2) when

the Drowsy cache technique is applied on the L-1 I-
Cache. Moreover, applying the Drowsy cache
technique on L-1 D-Cache leads to a LoS of 0%
which means that no task will miss its deadline due
to the application of this technique, on L-1 D-Cache,
as compared to the base mode.

 Table 11: LoS Values.

Mode L-1 D-Cache
R100 R400 R800 R1000

Gated-Vss 100% 100% 100% 100%
Drowsy 0% 0% 0% 0%

Mode L-1 I-Cache
R100 R400 R800 R1000

Gated-Vss 100% 100% 100% 100%
Drowsy 98% 100% 100% 100%

Mode L-2 U-Cache
R100 R400 R800 R1000

Gated-Vss 100% 100% 100% 100%
Drowsy 13.68% 22.9 % 22.95% 31.24 %

Furthermore, applying the Drowsy cache technique
on L-2 U-Cache provides an acceptable range of
LoS values. In summary, it can be concluded that
Drowsy L-1 D-Cache is a suitable low-leakage
design alternative for systems where tasks’
usefulness decreases sharply after missing its
deadline while Drowsy L-2 U-Cache can be an
acceptable option for non-critical soft RTSs i.e.
systems where task’s usefulness decreases gradually
after missing its deadline.

4.3 Analysis of RTECS Temporal Behaviour
In this section, the fitted GEV distributions and
associated WCET estimates will be employed to
study the impact of leakage-reduction techniques on
the temporal behaviour and stability of RTECS in
which a physical plant in controller by a resource-
constrained computer with an RTOS. Fig. 21 shows
a model of an RTECS in which a DC servo motor in
controller by a digital computer. A Proportional
Integral Derivative (PID) controller [56] is used to
control the motor. A digitized form the PID
controller is employed and implemented as a
periodic task inside the RTOS. Periodically, the
controlled process is sampled and its state variable
(y) is compared with a reference input (r). The result
of this comparison will be used as an input to the
PID control algorithm which will compute an
appropriate control signal (u) based on which the
motor behaviour will be adjusted. The execution
time of the PID control task is crucial to the
operation of this RTECS; an excessive delay in the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 99 Volume 12, 2015

computation of the control signal (u) could
potentially lead to instability in the operation of the
DC servo motor. In order to study the temporal
behaviour of the system shown in fig. 21 under a
particular low-leakage mechanism, the execution
time of the control task is set as a random variable
generated from the corresponding GEV distribution.
Fig. 22 illustrates the behaviour of the RTECS
shown in fig. 21 under the base mode where no
leakage mechanism is applied. The upper part of fig.
22 shows the reference input r(t) overlaid with the
actual output (y(t)) of the controlled DC motor. On
the other hand, the lower part shows the control
signal u(t) generated by the PID control algorithm.
Overall, it can be observed that the DC motor has a
satisfactory control performance and stability level
under the base mode where no leakage-saving

mechanism is applied. On the other hand, fig. 23
shows the temporal behaviour of the RTECS where
the underlying computer has a Drowsy L-1 D-
Cache. It indicates that the performance and stability
of the RTECS is almost identical to that of the base
mode where no leakage-saving technique is applied.
Moreover, fig. 24 depicts the performance of the
RTECS where the control task is executed by a
computer with Gated-Vss technique is applied on
the L-1 D-Cache. Fig. 24 illustrates the fact that the
Gated-Vss technique has caused a poor control
performance as compared to the other two modes;
Gated-Vss technique has caused an elevation in the
control task’s execution time that the controller does
not respond in a timely manner to the changes in the
controlled process output.

Fig. 21: A single-task RTECS Model.

-1

0

1

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

Time (ns)

u(
t)

Fig. 22: Single-task RTECS Performance Under Base

Mode.

-1

-0.5

0

0.5

1

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

Time (ns)

u(
t)

Fig. 23: Single-task RTECS Performance Under

Drowsy L-1 D-Cache.
Furthermore, fig. 25 depicts the performance of the
single-task RTECS assuming that the computer has
a Drowsy L-1 I-Cache. Apparently, the performance
of the RTECS is identical to that under the base
mode. The performance of the single-task RTECS

has also been studied in a system where the
controlling computer applies Gated-Vss on the L-1
I-Cache as shown in fig. 26. Fig. 26 shows that the
application of Gated-Vss technique on L-1 I-Cache
has resulted in a system; applying the Gated-Vss

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 100 Volume 12, 2015

technique on L-1 I-Cache has yielded an execution
time that is much higher than the sampling period of
the control algorithm and , in turn, resulted in a
situation where the controller cannot keep pace
with the changes in the motor’s state variable.

-1

-0.5

0

0.5

1

1.5

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

3

Time (ns)

u(
t)

Fig. 24: Single-task RTECS Performance Under
Gated-Vss L-1 D-Cache.

-1

-0.5

0

0.5

1

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

Time (ns)

u(
t)

Fig. 25: Single-task RTECS Performance Under
Drowsy L-1 I-Cache.

-1

-0.5

0

0.5

1

r(
t)

 ,
y(

t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1

0

1

2

Time (ns)

u(
t)

Fig. 26: Single-task RTECS Performance Under
Gated-Vss L-1 I-Cache.

Finally, Fig. 27 and 28 shows the performance of
the single-task RTECS under Drowsy and Gated-
Vss L-2 U-Cache, respectively. Once again, the
Drowsy cache technique outperforms the Gated-Vss
technique and leads to better control performance
and system stability when applied on the L-2 U-
Cache. As shown in fig. 28, the Gated-Vss
technique has also resulted in extremely poor
control performance and unstable system when
applied on the L-2 U-Cache.

-1

0

1

r(
t)

 ,
y(

t)

0 1 2 3 4 5
-1

0

1

Time (ns)

u(
t)

Fig. 27: Single-task RTECS Performance Under

Drowsy L-2 U-Cache.

-1

0

1

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2
-5

0

5

Time (ns)

u(
t)

Fig. 28: Single-task RTECS Performance Under
Gated-Vss L-2 U-Cache.

On the other hand, fig. 29 shows a TrueTime model
of a multi-task RTECS with three DC servo motors
controlled by a single computer equipped an RTOS.
The three motors are controlled by PID control
algorithms with different sampling period for each
motor. The sampling periods of DC servos 1, 2 and
3 are set as 6, 5 and 4 ns respectively. Each
algorithm is implemented as a real-time task within
the RTOS kernel. The RTOS uses the preemptive
earliest-deadline first (EDF) algorithm [1] to
schedule the executing control tasks. According to
the EDF algorithm, the task with earliest deadline

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 101 Volume 12, 2015

has the highest priority and can preempt any other
executing task. The EDF algorithm has been
selected due to its optimality; it can find a feasible

task schedule provided that one exists. The control
algorithms have been executed under different
sampling periods in order to create a task set with

Fig. 29: A multi-task RTECS Model.

Different priorities. Having tasks with different
priorities can create preemption points under which
the impact of execution time variations, due to
leakage-saving mechanism, can be studied not only
for a single-task but also for other competing tasks
in the system especially those tasks with lower
priority. Like the previous RTECS, the impact of
each leakage-saving mechanism on the control
performance and stability of each individual DC
servo motor and on the system as a whole is
modeled by setting the execution time of the control
tasks as a random variable generated from a
particular GEV distribution. In this model, the
execution time of the three control tasks, under any
mode, is generated from the same GEV distribution
since they are executing on the same computer. Fig.
30 shows the results of simulating the multi-task
RTECS in base mode. The upper part of this figure
shows control task’s schedule while the lower part
shows the performance of each DC servo motor as
compared to the reference input. The control tasks
of DC motor i is denoted as Ti for i = 1, 2, 3. At any
time instant, only one control task can be executing
while other tasks can be either idle or preempted.
Hence, any task can be in one of three possible
states: executing, idle, preempted. These states can
be seen as high, medium or low levels on the
schedule chart, respectively. As shown in fig. 30-a,
control tasks has gone through an alternating
priority behavior, for example, task T1 may have
higher priority than T2 at some point of time while
T2 may have higher priority in another time instant;

the EDF algorithm is a dynamic priority scheduling
algorithm in which instances of the same task may
execute at different priority levels throughout
system operation.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
2

T
3

(a) Control tasks schedule.

-2

0

2

Y
1(t

)

-2

0

2

Y
2(t

)

0 1 2 3 4 5
-2

0

2

Time (ns)

Y
3(t

)

(b) Performance of multi-task RTECS in base mode.

Fig. 30: Simulation of Multi-task RTECS in Base
Mode.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 102 Volume 12, 2015

This fact is important in two main facets: it ensures
system fairness where each task gains access to the
underlying computer and ensures that control tasks
can mutually affect each other. The later point is
very important since it allows RTS designers to
study low-leakage mechanisms under high
contention levels and, therefore, under situations
that aggressively exercise the computer’s memory
system. Furthermore, fig. 30-b shows the
performance of each controlled motor, under the
base mode. Despite the large number of

preemptions, the system can, in general, achieve a
satisfactory control performance and stability
margins. On the other hand, The performance of the
multi-task RTECS has also been observed under
leakage-saving techniques at L-1 I-Cache, L-1 D-
Cache and L-2 U-Cache. Fig. 31, 32 and 33 show
the schedule of control tasks besides the
performance of the controlled processes under low-
leakage L-1 D-Cache, L-1 I-Cache and L2- U-
Cache, respectively.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
3

T
2

(a) Drowsy mode schedule.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
2

T
3

(b) Gated-Vss mode schedule.

-2

0

2

Y
1(

t)

-2

0

2

Y
2(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

Time (ns)

Y
3(

t)

(c) Drowsy mode performance.

-2

0

2

Y
1(t

)

-1

0

1

Y
2(t

)

0 0.2 0.4 0.6 0.8 1
-2

0

2

Time (ns)

Y
3(t

)

(d) Gated-Vss mode performance.

Fig. 31: Simulation of Multi-task RTECS Under Low-leakage L-1 D-Cache.

They reveal two main observations: first, the control
task’s schedule under Drowsy mode is almost
identical to that of the base mode; Although
applying Drowsy mode leads to an increase in
control algorithm’s execution time, this increase is
very small that competing tasks do not undergo long
preemption times which, therefore, has given each
control algorithm a sufficient amount of processor’s
time to respond to changes in the state variable of
the controlled process. Hence, the RTECS has
achieved an acceptable control performance similar
to that of the base mode as shown in part (c) of fig.
31, 32 and 33. Second, the control task’s schedule
and the corresponding control performance shows a

totally different behavior under Gated-Vss mode;
applying the Gated-Vss technique on any cache
level has caused a significant increase in the control
algorithm’s execution time which , in turn, has
caused long preemption delays. A long preemption
delay would normally prevent some control tasks
from gaining access to the computer. Hence, they
will not respond to changes in the state variables of
their respective controlled processor in a timely
manner. Therefore, the RTECS has encountered a
very poor and unstable control performance as
shown in part (d) of the aforementioned figures. In
summary, applying the Drowsy cache technique on
any cache level provides a satisfactory control

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 103 Volume 12, 2015

performance and, consequently, provides a suitable
design alternative for low-leakage RTECS.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
2

T
3

(a) Drowsy mode schedule.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
2

T
3

(b) Gated-Vss mode schedule.

(c) Drowsy mode performance.

-2

0

2
Y

1(
t)

-2

0

2

Y
2(

t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

Time (ns)

Y
3(

t)

(d) Gated-Vss mode performance.

Fig. 32: Simulation of Multi-task RTECS Under Low-leakage L-1 I-Cache.

On the other hand, fig. 34 shows a model for a
networked RTECS. In this model, the components
of the control loop i.e. sensor, actuator and the
controller (computer) are assigned to different nodes
in the network. The network block is event-driven
and executes when a message enters or leaves the
network [55]. In this block, users can change the
transmission rate of the network, the medium access
control (MAC) protocol such as CSMA/CD,
CSMA/CA, round robin, FDMA and TDMA [55].
In this work, the network has been configured with
CSMA/CD (Ethernet) MAC protocol, a data rate of
80Kbps and a minimum frame size of 80 bits.
Whereas the sensor node works in a time-driven
manner, the actuator and the controller are event-
driven components. Periodically, the sensor
measures the current state of the DC motor and
sends the sampled value to the controller over the
network. The controller computes the appropriate
control signal, based on a PID control algorithm,
and sends this signal to the actuator node via the

network. Finally, the state of the controller DC
motor will be actuated accordingly. Hence, the total
roundtrip time (T) taken between sensing and
actuation can be computed as follows:

sc p caT t t t= + + (7)
Such that: tsc denotes the sensor-to-controller delay,
tca is the controller-to-actuator delay and tp is the
processing delay taken by the controller (computer)
to compute the appropriate control signal based on
the value received from the sensor node. While the
previous research efforts [38-43] have focused on
only network-induced delays, our work has focused
on computer-induced delays and shows its
importance in the temporal behavior and
performance of the networked control loop. Similar
to the previous models, the impact of leakage-saving
mechanisms on the performance of the networked
RTECS model has been captured by setting the
execution time of The control algorithm as a random
variable generated from a specific GEV distribution.

-2

0

2

Y 1(t)

-2

0

2

Y 2(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

Time (ns)

Y 3(t)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 104 Volume 12, 2015

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
2

T
3

(a) Drowsy mode schedule.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (ns)

T
1

T
2

T
3

(b) Gated-Vss mode schedule.

-2

0

2

Y
1(

t)

-2

0

2

Y
2(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

Time (ns)

Y
3(

t)

(c) Drowsy mode performance.

-2

0

2

Y
1(

t)

-2

0

2

Y
2(

t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

Time (ns)

Y
3(

t)

(d) Gated-Vss mode performance.

Fig. 33: Simulation of Multi-task RTECS Under Low-leakage L-2 U-Cache.

Fig. 34: Networked RTECS Model.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 105 Volume 12, 2015

The GEV distribution is selected based on the
leakage-saving mode and the cache level on which
this mode is applied. Fig. 35 shows the performance
of the DC motor assuming that the controller in
operating in the base mode where no leakage-saving
mechanism is applied. It shows that the output of the
DC motor settles to the level of the reference input
in a very small amount of time after undergoing a
small overshoot level. Overall, the RTECS has
achieved a satisfactory temporal behavior and
control performance.

-2

-1

0

1

2

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

Fig. 35: Performance of Networked RTECS in Base
Mode.

In addition, fig. 36 illustrates the control
performance of the networked RTECS assuming a
low-leakage L-1 D-Cache. Fig. 36-a shows the
impact of applying Drowsy cache technique on the
performance of the networked RTECS. It points out
the the performance of the networked RTECS in

presence of Drowsy L-1 D-Cache is identical to that
achieved under the base mode. On the other hand,
Fig. 36-b gives the performance of the networked
RTECS in presence of a controller (computer) with
an L-1 D-Cache operated in Gated-Vss mode.
Apparently, the application of the Gated-Vss
techniques on the L-1 D-Cache has resulted in a
system with poor control performance. The
waveform of the DC motor’s output shows a high
overshoot levels and very long settling time. In
other words, the motor keeps fluctuating without
settling to the steady-state case marked by the
reference input signal. Therefore, it can be
concluded that applying the Gated-Vss technique on
L-1 D-Cache has caused a situation in which the
time required to process a single sample, sent by the
sensor, is very long that other samples cannot be
processed in a timely manner and, consequently, has
prevented the actuator from updating the motor’s
state appropriately. Hence, unlike the assumption
made by previous work [38-43], the processing
delay induced by the controller especially under
low-leakage modes cannot be hidden or overlapped
with network-induced delays and should be handled
appropriately in order to maintain a satisfactory
performance of networked control loops. On the
other hand, fig. 37 and 38 depicts the performance
of the networked RTECS under low-leakage L-1 I-
Cache and L-2 U-Cache, respectively. They confirm
the observations that have been made based on fig.
36.

-2

-1

0

1

2

r(
t)

, y
(t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

(a) Drowsy mode.

-2

-1

0

1

2

r(
t)

, y
(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

Time (ns)

u(
t)

(b) Gated-Vss mode.

Fig. 36: Networked RTECS Performance Under Low-leakage L-1 D-Cache.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 106 Volume 12, 2015

-2

-1

0

1

2

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

(a) Drowsy mode.

-2

-1

0

1

2

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

(b) Gated-Vss mode.

Fig. 37: Networked RTECS Performance Under Low-leakage L-1 I-Cache.

-2

-1

0

1

2

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

(a) Drowsy mode.

-2

-1

0

1

2

r(
t)

 ,
y(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

Time (ns)

u(
t)

(b) Gated-Vss mode.

Fig. 38: Networked RTECS Performance Under Low-leakage L-2 U-Cache.

Finally, Table 12 summarizes and compares Drowsy
cache and Gated-Vss techniques based on power
savings, time-predictability and control
performance. In other words, it compares the two
techniques based on the best results each technique
has achieved under each of the aforementioned
parameters. In this table, the power saving column
gives the largest net power saving achieved by the

corresponding technique among all possible values
of LPI, the DOP and LoS columns quantify the
time-predictability of the processor in presence of
leakage-saving techniques and the control
performance describes the performance of single-
task, multi-task and networked RTECSs under every
combination of leakage-saving technique and the
cache level on which this technique is applied.

Table 12: Trade-offs Comparison between Drowsy Cache and Gated-Vss Techniques.

Technique Cache level
Parameter

Power Saving (%) DoP (%) LoS (%) Control Performance
Drowsy Cache L-1 D-Cache 33.61 93.05 0 Good

L-1 I-Cache 32.23 66.39 98 Good
L-2 U-Cache 50.21 80.30 13.68 Good

Gated-Vss L-1 D-Cache 53.64 19.72 100 Poor
L-1 I-Cache 15.68 5.42 100 Poor
L-2 U-Cache 49.93 31.39 100 poor

Several observations can be made based on table 12.
First, applying the Gated-Vss technique on L-1 D-
Cache has achieved the highest possible net power

savings as compared to all other alternatives.
However, this scenario falls short under other
parameters; it achieves low time-predictability for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 107 Volume 12, 2015

both hard and soft real-time systems and leads to a
poor control performance when applied in an
RTECS. Second, while applying the Drowsy cache
technique on the L-1 D-Cache leads to relatively
lower power savings, it has outperformed the Gated-
Vss technique in terms of time-predictability and
control performance. In fact, this scenario has
achieved the best time-predictability i.e. DoP and
LoS values among other design alternatives.
Moreover, it has resulted in good control
performance in the underlying RTECS. Third,
applying the Gated-Vss technique on the L-1 I-
Cache achieves the lowest value of power savings,
the lowest DOP value, a high LoS value and a poor
control performance. Hence, this scenario does not
provide a viable option for low-leakage RTS design.
On the other hand, employing a Drowsy L-1 I-
Cache can be a suitable design option for systems
with non-stringent power constraints and non-
critical timing constraints; this scenario has
achieved a relatively low power savings and a
moderate time-predictability with a good control
performance. Fourth, while applying the Gated-Vss
technique has achieved relatively high power
savings, it has low time-predictability (low DoP
value and high LoS value) besides leading to a poor
control performance. Hence, this technique does not
provide a suitable design alternative for low-leakage
real-time systems. On the other hand, using a
Drowsy L-2 U-Cache can achieve high power
savings, relatively high time predictability and good
control performance. Therefore, this scenario can be
considered as an effective design choice for low-
leakage real-time embedded systems. In summary,
our results indicate the using a Drowsy L-1 D-Cache
or a Drowsy L-2 U-Cache represent the most
suitable design alternatives for low-leakage real-
time embedded systems. Comparing these two
alternatives, it can be observed that a Drowsy L-2
U-Cache would normally achieve higher power
savings but a Drowsy L-1 D-Cache can achieve
higher time-predictability. Therefore, a Drowsy L-2
U-Cache can be a practical option for systems with
stringent power constraints and softer timing
requirements. However, a Drowsy L-1 D-Cache is
the most feasible leakage-saving technique for
systems with more critical timing requirements.

5 Conclusion and Future Work
This paper has extensively tackled the design of
low-leakage cache hierarchy for embedded real-time
systems with a single core processor. A
multidisciplinary research methodology has be

applied to assess and compare state-preserving and
state-destroying leakage-saving mechanisms based
on their power-saving capability and their impact on
the time-predictability of the underlying processor.
Our results have shown that applying a state-
preserving technique on particular cache level
represent the most feasible design alternative in
which reasonable tradeoff between power-savings
and time-predictability can be attained. However,
the decision, of which cache level should be put in
low-leakage mode, depends the criticality of timing
requirements and power constraints.

 As a future research, we will study the impact of
leakage-saving mechanisms on time-predictability
and performance of multi-core real-time systems
especially those with heterogeneous architectures
where each core may apply a different leakage-
saving mechanism.

References:
[1] J. Liu, Real-Time Systems, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2000.

[2] T. Noergaard, Embedded Systems Architecture:
A Comprehensive Guide for Engineers and
Programmers, second edition, Elsevier Inc., 2012.

[3] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Fifth
Edition, the Morgan Kaufmann Series in Computer
Architecture and Design, 2011.

[4] H. Abouja, Real-Time Systems Performance
Improvement with Multi-Level Cache Memory, In
Proc. Of the Canadian Conference on Electrical and
Computer Engineering, 2006, pp. 78-81.

 [5] L. Thiele and R. Wilhelm, Design for Timing
Predictability, Real-Time Systems, Vol. 28, 2004,
pp. 157-177.

[6] M. Schoeberl, Is time predictability
quantifiable?, In Proc. Of the International
Conference on Embedded Computer Systems, 2012,
pp. 333-338.

[7] M. Lv, N. Guan, Y. Zhang and Q. Deng, A
Survey of WCET Analysis of Real-Time Operating
Systems, In Proc. Of the International Conference
on Embedded Software and Systems, 2009, pp. 65-
72.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 108 Volume 12, 2015

[8] Y. Dinag and W. Zhang, Bounding the Worst-
Case Execution Time of Static NUCA Caches, In
Proc. of the 33rd IEEE International Performance
Computing and Communications Conference
(IPCCC), Dec, 2014, pp. 1181-1184.

[9] S. Chattopadhyay, C.L. Kee, A. Roychoudhury
and T. Kelter, A Unified WCET Analysis
Framework for Multi-core Platforms, In Proc. Of
the IEEE 18th Real-Time and Embedded
Technology and Applications Symposium (RTAS),
2012, pp. 99-108.

[10] R. Wilhelm, D. Grund, J. Reineke, M.
Schlickling, M. Pister and C Ferdinand, ,Memory
Hierarchies, Pipelines, and Buses for Future
Architectures in Time-Critical Embedded Systems,
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 28, Issue: 7,
2009, pp. 966 – 978.

[11] T. Hattori, Challenges for Low-power
Embedded SOC’s, In Proc. of the International
Symposium on VLSI Design, Automation and Test,
2007, pp. 1-4.

[12] D. Vilcu, Real time scheduling and CPU power
consumption in embedded systems, In Proc. of the
IEEE International Conference on Automation,
Quality and Testing, Robotics, 2008, pp. 261-266.

[13] M. Kondo, H. Kobyashi, R. Sakamoto and M.
Wada, Design and evaluation of fine-grained power-
gating for embedded microprocessors, In. Proc. of
Design, Automation and Test in Europe Conference
and Exhibition,2014, pp. 1-6.

[14] M. Z. Hasan and M. Bird, Energy reductions
for embedded processors in reconfigurable
hardware, In Proc. of the IEEE International
Conference on Electro/Information Technology
(EIT), 2011, pp. 1-8.

[15] M. Alipour, H. Taghdisi and S. H.
Sadeghzadeh, Multi objective design space
exploration of cache for embedded applications, In.
Proc. of the 25th IEEE Canadian Conference on
Electrical and Computer Engineering, 2012, pp.1-4.

[16] Y. Li, D. Parikh, Y. Zhang and K.
 Sankaranarayanan, State-preserving vs. non-state-
preserving leakage control in caches, In Proc. of the
Design, Automation and Test in Europe Conference
and Exhibition, 2004, pp. 22-27.

[17] M. D. Powell, S.-H Yang, B. Falsafi, K. Roy,
and T. N. Vijaykumar, Gated–Vdd: a circuit
technique to reduce leakage in deep-submicron
cache memories. In Proc. of the International
Symposium on Low Power Electronics and Design,
2000, pp. 90-95.

[18] K. Flautner, N. S. Kim, S. Martin and D.
Blaauw, Drowsy caches: simple techniques for
reducing leakage power, In Proc. of the 29th Annual
International Symposium on Computer
Architecture, 2002, pp. 148-157.

[19] Y. Lu, Approximation Techniques for Timing
Analysis of Complex Real-Time Embedded
Systems, Licentiate Thesis, School of Innovation,
Design and Engineering, Mälardalen University,
Sweden, 2010.

[20] Y. Lu, T. Nolte, I. Bate, L. Cucu-Grosjean, A
New Way about using Statistical Analysis of Worst-
Case Execution Times, ACM SIGBED Review, Vo.
8, Issue 3,2011, pp. 11-14.

[21] K. Patil, K. Seth and F. Muller, Compositional
static instruction cache simulation, In. Proc. of the
2004 ACM SIGPLAN/SIBBED Conference on
Languages, Compliers and Tools for Embedded
Systems, 2004, pp. 136-145.

[22] S. Byhlin, A. Ermedahl, ; J. Gustafsson, B.
Lisper, Applying static WCET analysis to
automotive communication software, In Proc. Of the
17th Euromicro Conference on Real-Time Systems,
2005, pp. 249-258.

[23] J. Yan and W. Zhang, Analyzing the Worst-
Case Execution Time for Instruction Caches With
Prefetching, ACM Transactions on Embedded
Computer Systems (TECS), Vol. 8, No. 1, Article 7,
December 2008.

[24] I. Wenzel, R. Kirner, B. Rieder and P. P.
Puschner, Measurement-based timing analysis, In
Proc. of the 3rd International Symposium on
Leveraging Applications of Formal Methods,
Verification and Validation, 2008, pp. 430–444.

 [25] L. Kong and J. Jiang, A Safe Measurement-
base Worst-case Execution Time Estimation Using
Automatic Test-data Generation, In Proc. of the
IEEE 16th Pacific Rim International Symposium on
Dependable Computing, 2010, pp. 245-246.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 109 Volume 12, 2015

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chattopadhyay,%20S..QT.&searchWithin=p_Author_Ids:37673632000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kee,%20C.L..QT.&searchWithin=p_Author_Ids:38243627500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Roychoudhury,%20A..QT.&searchWithin=p_Author_Ids:37267603400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kelter,%20T..QT.&searchWithin=p_Author_Ids:37892024200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200017
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200017
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alipour:Mehdi
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Taghdisi:Hojjat
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sadeghzadeh:Seyed_Hassan
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sadeghzadeh:Seyed_Hassan
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sadeghzadeh:Seyed_Hassan
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sankaranarayanan,%20K..QT.&searchWithin=p_Author_Ids:38197741700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Byhlin,%20S..QT.&searchWithin=p_Author_Ids:37549983200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ermedahl,%20A..QT.&searchWithin=p_Author_Ids:37370264300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gustafsson,%20J..QT.&searchWithin=p_Author_Ids:37332407100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lisper,%20B..QT.&searchWithin=p_Author_Ids:37427363400&newsearch=true

[26] A. Marref and A. Betts, Accurate
Measurement-Based WCET Analysis in the
Absence of Source and Binary Code, In Proc. of the
14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2011, pp. 127-
135.

[27] S. Bunte, M. Zolda, M. Tautschnig and R.
Kirner, Improving the Confidence in Measurement-
Based Timing Analysis, In Proc. of the 14th IEEE
International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2011, pp. 144-
151.

[28] A. Betts, A. Donaldson, Estimating the WCET
of GPU-Accelerated Applications Using Hybrid
Analysis, In Proc. Of the 25th Euromicro
Conference on Real-Time Systems (ECRTS), 2013,
pp. 193-202. .

[29] S. Bygde, Static WCET Analysis Based On
Abstract Interpretation and Counting of Elements,
Licentiate Thesis, School of Innovation, Design and
Engineering, Mälardalen University, Sweden, 2010.

[30] S. Edgar and A. Burns, Statistical Analysis of
WCET for Scheduling, In Proc. of the 22nd IEEE
Real-Time Systems Symposim,2001,pp. 215-224.

 [31] J. Hansen, S. Hissam and G. A. Moreno,
Statistical-based WCET Estimation and Validation,
In. Proc. of the 9th International Workshop on
Worst-case Execution Time Analysis, WCET, 2009.

[32] N. Hillary and K. Madsen, You Can’t Control
what you Can’t Measure, OR Why it’s Close to
Impossible to Guarantee Real-time Software
Performance on a CPU with on-chip cache, In Proc.
of the 2nd International Workshop on WCET
Analysis, 2002.

[33] J. Beirlan, Y. Geogebeur, J. Segers and J.
Teugels, Statistics of Extremes: Theory and
Applications, Wiley Press, 2004.

[34] H. Aghababa, A. Khosropour, A. Afzali-kusha
and B. Forouzandeh, Statistical estimation of
leakage power dissipation in nano-scale
complementary metal oxide semiconductor digital
circuits using generalised extreme value
distribution, IET Circuits, Devices and Systems,
Vol. 6, Issue 5, 2012,pp. 273-278.

[35] N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K.
Flautner, J.S. Hu,M.J. Irwin, M. Kandemir, and V.
Narayanan, Leakage Current: Moore’s Law Meets
Static Power, Computer, vol. 36, no. 12, 2003, pp.
68-75.

[36] A. Cervin, Towards the Integration of Control
and Real-Time Scheduling Design, Licentiate
Thesis, Department of Automatic Control, Lund
Institute of Technology,2000.

[37] F. Xia and Y. Sun, Control-Scheduling
Codesign: A Perspective on Integrating Control and
Computing, Dynamic of Continous, Discrete and
Impulsive Systems- Series B, Vol. 13, no. S1, 2006,
pp. 1352-1358.

[38] A. Cervin and J. Eker, Control-scheduling
codesign of real-time systems: The control server
approach, Journal of Embedded Computing, Vol. 1,
Issue 2, 2005, pp. 209-224.

[39] S. Dai, H. Lin, S. Sam and S. S. Ge,
Scheduling-and-Control Codesign for a Collection
of Networked Control Systems With Uncertain
Delays, IEEE Transactions on Control Systems
Technolgy, Vol. 18, No. 1, 2010,pp. 66-78.

[40] R. A. Gupta and M. Chow, Netwroked Control
Systems: Overview and Research Trends, IEEE
Transactions on Industrial Electronis, Vol. 57, No.
7, 2010, pp. 2527-2535.

[41] Y. Wang and L. He, Analysis and Simulation
of Networked Control Systems Delay
Characteristics Based on TrueTime, Computer
Modeling and New Technologies, Vol. 17, No. 4,
2013, pp. 210-216.

[42] K. Nishanth and P. S. S Sashank, Real-Time
Computer Control of Disctribued Control Systems
Using TrueTime Toolbox in Matlab, International
Journal of Advanced Science, Engineering and
Technology, Vol. 3, Issue 1,2014, pp. 8-13.

[43] O. M. M. Vall, Compensation of Time Delay
Acting in Networked Control Systems Using Smith
Predictor and Pade Approximation, International
Journal of Information Technology and Computer
Science, Vol. 15, Issue 1, 2014, pp. 9-15.

[44] Y. Zhang, D. Parikh, K. Sankaranarayanan, K.
Sakdron and M. Stan, HotLeakage: A Temperature-
Aware Model of Subthreshold and Gate Leakage for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 110 Volume 12, 2015

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5752887
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5752887
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bunte,%20S..QT.&searchWithin=p_Author_Ids:37705862800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zolda,%20M..QT.&searchWithin=p_Author_Ids:37705861800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tautschnig,%20M..QT.&searchWithin=p_Author_Ids:37688315400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kirner,%20R..QT.&searchWithin=p_Author_Ids:37297470800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5752887
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5752887
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Donaldson,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6599404

Architects, Tech. Report CS-2003-05, University of
Virginia, Dept. of Computer Science,2003.

[45] R. E. Kessler, E. J. MclLellan and D. A. Webb,
The Alpha 21264 Microprocessor Architecture, In
Proc. of the International Symposium on Low-
Power Electronics and Design, 1998, pp. 293-298.

[46] www.spec.org.

[47] F. J. Cazolrla, T Vardanega, E. Quinones and J.
Abella, Upper-bounding Program Execution Time
with Extreme Value Theory, 13th International
Workshop on Worst-Case Execution Time Analysis
(WCET 2013), pp. 61-70, 2013.

[48] R. Placket and J. Burman, The Design of
Optimum Multifactorial Experiments, Biometrica,
Vol. 33, Issue 4, 1956, pp. 305-325.

[49] J. Yi and D. Lilja, Effects of Processor
Parameter Selection on Simulation Results, MSI
Report 2002/16, 2002.

 [50] www.minitab.com.

[51] J. Banks, J. S. Carson II, B. Nelson, and D. M.
Nicol, Discrete-Event System Simulation, Pearson
Education,2009.

[52] www.mathworks.com

[53] R. E. Walpole, R. H. Mayers, S. L. Mayers and
K. Ye, Probability and Statisctics for Engineers and
Scientists, Prentice Hall, 2011.

[54] A. Cervin, D. Henriksson, B. Lincoln, J. Eker
and K. Årzén, How Does Control Timing Affect
Performance? Analysis and Simulation of Timing
Using Jitterbug and TrueTime." IEEE Control
Systems Magazine, Vol 23, No. 3, pp. 16–30,
June 2003.

[55] Jan Gustafsson, Adam Betts, Andreas
Ermedahl, and Björn Lisper. The Mälardalen WCET
benchmarks – past, present and future. In Björn
Lisper, editor, Proc. 10th International Workshop on
Worst-Case Execution Time Analysis
(WCET’2010), pages 137–147, Brussels, Belgium,
July 2010. OCG.

[56] K. J. Astrom and B. Wittenmark, Computer-
Controlled Systems: Theory and Design, 3rd edition,
Prentice Hall, 1996.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mutaz Al-Tarawneh

E-ISSN: 2224-3402 111 Volume 12, 2015

